001     637192
005     20250907054638.0
024 7 _ |a 10.1107/S1600576725001694
|2 doi
024 7 _ |a 0021-8898
|2 ISSN
024 7 _ |a 1600-5767
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2025-03801
|2 datacite_doi
024 7 _ |a altmetric:175357845
|2 altmetric
024 7 _ |a pmid:40170962
|2 pmid
037 _ _ |a PUBDB-2025-03801
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Stubkjær, Rasmus Baden
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Reliability of pair distribution function analysis in in situ experiments
260 _ _ |a Copenhagen
|c 2025
|b Munksgaard
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1756734823_1060253
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In situ and operando pair distribution function (PDF) studies are becoming commonly used to study chemical reactions, nucleation and growth of nanoparticles, or structural changes during the operation of batteries, catalysts, thermoelectric devices etc. However, repeated time-resolved total scattering experiments and subsequent PDF analysis are often not prioritized due to the scarce synchrotron beam time available. This means that the experimental uncertainty and reproducibility of the experimental methods are unknown, and the full potential of in situ PDF experiments may not be exploited. Here, we quantify the experimental uncertainty of the PDF technique in an in situ study of the hydro­thermal synthesis of ZrO2 nanoparticles. Systematic variation of the parameters used to obtain the PDF shows that the user-defined parameters can potentially affect the chemical conclusions obtained from the time-resolved experiment. We found that comparable results are best obtained using the same input parameters across different experiments. We also compare different PDF algorithms to examine whether the processing algorithm influences the chemical analysis.
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 0
536 _ _ |a FS-Proposal: I-20211382 EC (I-20211382-EC)
|0 G:(DE-H253)I-20211382-EC
|c I-20211382-EC
|x 1
536 _ _ |a FS-Proposal: I-20220468 (I-20220468)
|0 G:(DE-H253)I-20220468
|c I-20220468
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P21.1
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P21.1-20150101
|6 EXP:(DE-H253)P-P21.1-20150101
|x 0
700 1 _ |a Kløve, Magnus
|0 0000-0001-9513-8798
|b 1
700 1 _ |a Bertelsen, Andreas
|0 P:(DE-H253)PIP1087044
|b 2
700 1 _ |a Borup, Anders Bæk
|0 P:(DE-H253)PIP1101301
|b 3
700 1 _ |a Roelsgaard, Martin
|0 P:(DE-H253)PIP1026494
|b 4
700 1 _ |a Iversen, Bo Brummerstedt
|0 P:(DE-H253)PIP1009462
|b 5
|e Corresponding author
773 _ _ |a 10.1107/S1600576725001694
|g Vol. 58, no. 2, p. 495 - 503
|0 PERI:(DE-600)2020879-0
|n 2
|p 495 - 503
|t Journal of applied crystallography
|v 58
|y 2025
|x 0021-8898
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/637192/files/oc5043.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/637192/files/oc5043.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:637192
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a European Molecular Biology Laboratory
|0 I:(DE-588b)235011-7
|k EMBL
|b 2
|6 P:(DE-H253)PIP1087044
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-H253)PIP1087044
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-H253)PIP1101301
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 3
|6 P:(DE-H253)PIP1101301
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 P:(DE-H253)PIP1026494
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-H253)PIP1009462
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-17
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-17
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J APPL CRYSTALLOGR : 2022
|d 2024-12-17
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J APPL CRYSTALLOGR : 2022
|d 2024-12-17
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2024-12-17
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-17
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-17
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-17
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-17
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21