000637144 001__ 637144
000637144 005__ 20250825101233.0
000637144 0247_ $$2doi$$a10.1039/D5CP02406D
000637144 0247_ $$2ISSN$$a1463-9076
000637144 0247_ $$2ISSN$$a1463-9084
000637144 037__ $$aPUBDB-2025-03777
000637144 082__ $$a540
000637144 1001_ $$aKolmangadi, Mohamed A.$$b0
000637144 245__ $$aMolecular mobility and electrical conductivity of amino acid-based (DOPA) ionic liquid crystals in the bulk state and nanoconfinement
000637144 260__ $$aCambridge$$bRSC Publ.$$c2025
000637144 3367_ $$2DRIVER$$aarticle
000637144 3367_ $$2DataCite$$aOutput Types/Journal article
000637144 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1756109036_2536569
000637144 3367_ $$2BibTeX$$aARTICLE
000637144 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000637144 3367_ $$00$$2EndNote$$aJournal Article
000637144 520__ $$aThis study explores the molecular mobility, phase behavior, and electrical conductivity of dihydroxyphenylalanine-based ionic liquid crystals (DOPAn, with alkyl side chains n = 12, 14, 16) featuring cyclicguanidiniumchloride headgroups, in both bulk and nanoconfined states. Using broadband dielectricspectroscopy, differential scanning calorimetry, and fast scanning calorimetry, the research uncovers acomplex interplay between molecular structure, self-assembly, and molecular mobility. In bulk, DOPAnshows a phase sequence from plastic crystalline to hexagonal columnar and isotropic phases, driven bysuperdisc formation and columnar organization. Multiple relaxation processes are identified: localized sidechaindynamics (g-relaxation), ionic headgroup or core motions (a1-relaxation), and cooperative alkyldomain fluctuations (a2-relaxation). Conductivity decreases with increasing side chain length. Undernanoconfinement in anodic aluminum oxide membranes, phase behavior changes: the Colh–Iso transitionis suppressed, and a new a3-relaxation appears, linked to dynamics in an adsorbed interfacial layer. DC conductivitydrops by up to four orders of magnitude due to confinement effects, altered molecular orientation,and phase transitions—especially the emergence of a nematic-like state in DOPA16. These findingshighlight the importance of molecular design, pore geometry, and surface chemistry in tuning ionic liquidcrystal properties for advanced applications in nanofluidics, ion transport, and responsive materials
000637144 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
000637144 536__ $$0G:(GEPRIS)430146019$$aDFG project G:(GEPRIS)430146019 - Ionische Flüssigkristalle in Nanoporösen Festkörpern: Selbstorganisation, molekulare Mobilität und elektro-optische Funktionalitäten (430146019)$$c430146019$$x1
000637144 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000637144 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000637144 7001_ $$aRaab, Aileen R.$$b1
000637144 7001_ $$aSzymoniak, Paulina$$b2
000637144 7001_ $$aLi, Zhuoqing$$b3
000637144 7001_ $$0P:(DE-H253)PIP1013897$$aHuber, Patrick$$b4$$eCorresponding author
000637144 7001_ $$aLaschat, Sabine$$b5
000637144 7001_ $$00000-0003-4330-9107$$aSchönhals, Andreas$$b6
000637144 773__ $$0PERI:(DE-600)1476244-4$$a10.1039/D5CP02406D$$gp. 10.1039.D5CP02406D$$p10.1039.D5CP02406D$$tPhysical chemistry, chemical physics$$v1$$x1463-9076$$y2025
000637144 8564_ $$uhttps://bib-pubdb1.desy.de/record/637144/files/d5cp02406d.pdf$$yRestricted
000637144 8564_ $$uhttps://bib-pubdb1.desy.de/record/637144/files/d5cp02406d.pdf?subformat=pdfa$$xpdfa$$yRestricted
000637144 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1013897$$aDeutsches Elektronen-Synchrotron$$b4$$kDESY
000637144 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1013897$$aExternal Institute$$b4$$kExtern
000637144 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x0
000637144 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2024-12-09$$wger
000637144 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-09
000637144 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-09
000637144 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-09
000637144 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-09
000637144 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-09
000637144 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-09
000637144 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-09
000637144 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS CHEM CHEM PHYS : 2022$$d2024-12-09
000637144 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-09
000637144 9201_ $$0I:(DE-H253)CIMMS-20211022$$kCIMMS$$lCIMMS-RA Center for integr. Multiscale M$$x0
000637144 980__ $$ajournal
000637144 980__ $$aEDITORS
000637144 980__ $$aVDBINPRINT
000637144 980__ $$aI:(DE-H253)CIMMS-20211022
000637144 980__ $$aUNRESTRICTED