001     636702
005     20250907054621.0
024 7 _ |a 10.1021/jacs.5c00465
|2 doi
024 7 _ |a 0002-7863
|2 ISSN
024 7 _ |a 1520-5126
|2 ISSN
024 7 _ |a 1943-2984
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2025-03721
|2 datacite_doi
024 7 _ |a altmetric:178338375
|2 altmetric
024 7 _ |a pmid:40550758
|2 pmid
037 _ _ |a PUBDB-2025-03721
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Nguyen, Hung Quoc
|0 P:(DE-H253)PIP1104792
|b 0
245 _ _ |a Revealing the Hidden Polysulfides in Solid-State Na–S Batteries: How Pressure and Electrical Transport Control Kinetic Pathways
260 _ _ |a Washington, DC
|c 2025
|b ACS Publications
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1756895848_1637419
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Room temperature operation of Na−S batterieswith liquid electrolytes is plagued by fundamental challengesstemming from polysulfide solubility and their shuttle effects.Inorganic solid electrolytes offer a promising solution by acting asbarriers to polysulfide migration, mitigating capacity loss. While thesequential formation of cycling products in molten-electrode andliquid electrolytes-based Na−S batteries generally aligns with theexpectations from the Na−S phase diagram, their presence,stability, and transitory behavior in systems with inorganic solidelectrolytes at room temperature, remain poorly understood. Toaddress this, we employed operando scanning microbeam X-raydiffraction, operando X-ray photoelectron spectroscopy and ex-situX-ray absorption spectroscopy to investigate the sulfur conversionmechanisms in Na−S cells with Na3PS4 and Na4(B10H10)(B12H12) electrolytes. Our findings reveal the formation of crystalline andamorphous polysulfides, including those predicted by the Na−S phase diagram (e.g., Na2S5, Na2S4, Na2S2, Na2S), high-orderpolysulfides observed in liquid-electrolyte systems (e.g., Na2Sx, where x = 6−8), and phases like Na2S3 typically stable only underhigh-temperature or high-pressure conditions. We demonstrate that these transitions are governed by diffusion-limited kinetics andlocalized stress concentrations, emphasizing the critical role of pressure, which serves as both a thermodynamic variable, as well as adesign parameter, for optimizing solid-state Na−S battery performance necessary for pushing these cells closer to the commercialfrontier.
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 0
536 _ _ |a PSI-FELLOW-III-3i - International, Interdisciplinary & Intersectoral Postdoctoral Fellowships at the Paul Scherrer Institut (884104)
|0 G:(EU-Grant)884104
|c 884104
|f H2020-MSCA-COFUND-2019
|x 1
536 _ _ |a Sylinda - Synchrotron Light Industry Applications (952148)
|0 G:(EU-Grant)952148
|c 952148
|f H2020-WIDESPREAD-2020-5
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P07
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P07-20150101
|6 EXP:(DE-H253)P-P07-20150101
|x 0
700 1 _ |a Kanedal, Mikael Dahl
|0 P:(DE-H253)PIP1108451
|b 1
700 1 _ |a Todt, Juraj
|0 P:(DE-H253)PIP1017524
|b 2
700 1 _ |a Jin, Feng
|0 P:(DE-H253)PIP1104781
|b 3
700 1 _ |a Do, Quyen
|0 0009-0008-2927-6007
|b 4
700 1 _ |a Zalka, Dora
|0 P:(DE-H253)PIP1100575
|b 5
700 1 _ |a Maximenko, Alexey
|0 P:(DE-H253)PIP1117530
|b 6
700 1 _ |a Stoian, Dragos
|0 0000-0002-2436-6483
|b 7
700 1 _ |a Schell, Norbert
|0 P:(DE-H253)PIP1005745
|b 8
700 1 _ |a van Beek, Wouter
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Fitzek, Harald
|0 0000-0002-1842-3672
|b 10
700 1 _ |a Rattenberger, Johannes
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Siller, Valerie
|0 0000-0001-5477-6304
|b 12
700 1 _ |a Boles, Steven T.
|0 0000-0003-1422-5529
|b 13
700 1 _ |a El Kazzi, Mario
|0 0000-0003-2975-0481
|b 14
700 1 _ |a Keckes, Jozef
|0 P:(DE-H253)PIP1008403
|b 15
700 1 _ |a Rettenwander, Daniel
|0 P:(DE-H253)PIP1112081
|b 16
|e Corresponding author
773 _ _ |a 10.1021/jacs.5c00465
|g Vol. 147, no. 27, p. 23492 - 23503
|0 PERI:(DE-600)1472210-0
|n 27
|p 23492 - 23503
|t Journal of the American Chemical Society
|v 147
|y 2025
|x 0002-7863
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/636702/files/Nguyen_JACS_2025.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/636702/files/Nguyen_JACS_2025.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:636702
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1104792
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-H253)PIP1108451
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-H253)PIP1017524
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-H253)PIP1104781
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-H253)PIP1100575
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 P:(DE-H253)PIP1117530
910 1 _ |a Helmholtz-Zentrum Geesthacht
|0 I:(DE-588b)16087541-9
|k HZG
|b 8
|6 P:(DE-H253)PIP1005745
910 1 _ |a Helmholtz-Zentrum Hereon
|0 I:(DE-588b)1231250402
|k Hereon
|b 8
|6 P:(DE-H253)PIP1005745
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 15
|6 P:(DE-H253)PIP1008403
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 16
|6 P:(DE-H253)PIP1112081
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-13
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b J AM CHEM SOC : 2022
|d 2024-12-13
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J AM CHEM SOC : 2022
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1210
|2 StatID
|b Index Chemicus
|d 2024-12-13
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-13
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1200
|2 StatID
|b Chemical Reactions
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-13
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-13
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-13
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 0
920 1 _ |0 I:(DE-H253)Hereon-20210428
|k Hereon
|l Helmholtz-Zentrum Hereon
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 _ _ |a I:(DE-H253)Hereon-20210428
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21