000636663 001__ 636663
000636663 005__ 20251109055717.0
000636663 0247_ $$2arXiv$$aarXiv:2404.17545
000636663 0247_ $$2doi$$a10.1038/s42005-025-02243-6
000636663 0247_ $$2inspire$$ainspire:2781250
000636663 0247_ $$2datacite_doi$$a10.3204/PUBDB-2025-03701
000636663 0247_ $$2altmetric$$aaltmetric:181335089
000636663 037__ $$aPUBDB-2025-03701
000636663 041__ $$aEnglish
000636663 082__ $$a530
000636663 088__ $$2arXiv$$aarXiv:2404.17545
000636663 088__ $$2DESY$$aDESY-25-118
000636663 1001_ $$0P:(DE-H253)PIP1097418$$aCrippa, Arianna$$b0$$eCorresponding author
000636663 245__ $$aTowards determining the (2+1)-dimensional Quantum Electrodynamics running coupling with Monte Carlo and quantum computing methods
000636663 260__ $$aLondon$$bSpringer Nature$$c2024
000636663 3367_ $$2DRIVER$$aarticle
000636663 3367_ $$2DataCite$$aOutput Types/Journal article
000636663 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1762335917_2307326
000636663 3367_ $$2BibTeX$$aARTICLE
000636663 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000636663 3367_ $$00$$2EndNote$$aJournal Article
000636663 520__ $$aThe solution of strongly-interacting quantum field theories remains a major challenge in theoretical physics, often requiring numerical solutions. A first-principles approach in this direction is the lattice formulation, where spacetime is approximated with a finite grid. In this work, we examine the case of a compact pure-gauge U(1) lattice gauge theory in (2 + 1) dimensions, presenting a strategy to determine the running coupling of the theory and extracting the non-perturbative Λ-parameter. This is achieved by combining Monte Carlo simulations and quantum computing techniques, matching the expectation value of the plaquette operator. We also present results for the static potential and static force, which can be related to the renormalized coupling. The outlined procedure can be extended to other Abelian and non-Abelian lattice gauge theories with matter fields, and might provide a way towards studying lattice quantum chromodynamics utilizing both quantum and classical methods.
000636663 536__ $$0G:(DE-HGF)POF4-611$$a611 - Fundamental Particles and Forces (POF4-611)$$cPOF4-611$$fPOF IV$$x0
000636663 536__ $$0G:(GEPRIS)511713970$$aDFG project G:(GEPRIS)511713970 - SFB 1639: NuMeriQS: Numerische Methoden zur Untersuchung von Dynamik und Strukturbildung in Quantensystemen (511713970)$$c511713970$$x1
000636663 536__ $$0G:(GEPRIS)390534769$$aDFG project G:(GEPRIS)390534769 - EXC 2004: Materie und Licht für Quanteninformation (ML4Q) (390534769)$$c390534769$$x2
000636663 536__ $$0G:(EU-Grant)101113690$$aPASQuanS2.1 - Programmable Atomic Large-scale Quantum Simulation 2 - SGA1 (101113690)$$c101113690$$fHORIZON-CL4-2022-QUANTUM-02-SGA$$x3
000636663 536__ $$0G:(EU-Grant)899794$$aOPTOlogic - Optical Topologic Logic (899794)$$c899794$$fH2020-FETOPEN-2018-2019-2020-01$$x4
000636663 536__ $$0G:(EU-Grant)101080086$$aNeQST - NExt level Quantum information processing for Science and Technology (101080086)$$c101080086$$fHORIZON-CL4-2021-DIGITAL-EMERGING-02$$x5
000636663 536__ $$0G:(EU-Grant)847648$$aJUNIOR LEADER - Junior Leader la Caixa Postdoctoral Fellowship Programme: Shaping the new generation of leaders in research (847648)$$c847648$$fH2020-MSCA-COFUND-2018$$x6
000636663 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000636663 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000636663 7001_ $$0P:(DE-H253)PIP1105950$$aRomiti, Simone$$b1$$eCorresponding author
000636663 7001_ $$0P:(DE-HGF)0$$aFuncke, Lena$$b2
000636663 7001_ $$0P:(DE-H253)PIP1003636$$aJansen, Karl$$b3
000636663 7001_ $$0P:(DE-H253)PIP1086314$$aKuehn, Stefan$$b4
000636663 7001_ $$0P:(DE-HGF)0$$aStornati, Paolo$$b5
000636663 7001_ $$0P:(DE-H253)PIP1118315$$aUrbach, Carsten$$b6
000636663 773__ $$0PERI:(DE-600)2921913-9$$a10.1038/s42005-025-02243-6$$gVol. 8, no. 1, p. 367$$n1$$p367$$tCommunications Physics$$v8$$x2399-3650$$y2024
000636663 7870_ $$0PUBDB-2025-02523$$aCrippa, Arianna et.al.$$d2024$$iIsParent$$rarXiv:2404.17545 ; arXiv:2404.17545 ; DESY-25-118$$tTowards determining the (2+1)-dimensional Quantum Electrodynamics running coupling with Monte Carlo and quantum computing methods
000636663 8564_ $$uhttps://bib-pubdb1.desy.de/record/636663/files/HTML-Approval_of_scientific_publication.html
000636663 8564_ $$uhttps://bib-pubdb1.desy.de/record/636663/files/PDF-Approval_of_scientific_publication.pdf
000636663 8564_ $$uhttps://bib-pubdb1.desy.de/record/636663/files/s42005-025-02243-6.pdf$$yOpenAccess
000636663 8564_ $$uhttps://bib-pubdb1.desy.de/record/636663/files/s42005-025-02243-6.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000636663 909CO $$ooai:bib-pubdb1.desy.de:636663$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000636663 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1097418$$aDeutsches Elektronen-Synchrotron$$b0$$kDESY
000636663 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1105950$$aExternal Institute$$b1$$kExtern
000636663 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1003636$$aDeutsches Elektronen-Synchrotron$$b3$$kDESY
000636663 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1086314$$aDeutsches Elektronen-Synchrotron$$b4$$kDESY
000636663 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1118315$$aExternal Institute$$b6$$kExtern
000636663 9131_ $$0G:(DE-HGF)POF4-611$$1G:(DE-HGF)POF4-610$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMatter and the Universe$$vFundamental Particles and Forces$$x0
000636663 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-20
000636663 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-20
000636663 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000636663 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-20
000636663 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCOMMUN PHYS-UK : 2022$$d2024-12-20
000636663 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCOMMUN PHYS-UK : 2022$$d2024-12-20
000636663 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-04-10T15:36:49Z
000636663 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-04-10T15:36:49Z
000636663 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-20
000636663 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2024-12-20
000636663 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-20
000636663 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000636663 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-20
000636663 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2024-12-20
000636663 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-20
000636663 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-20
000636663 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-20
000636663 9201_ $$0I:(DE-H253)CQTA-20221102$$kCQTA$$lCentre f. Quantum Techno. a. Application$$x0
000636663 980__ $$ajournal
000636663 980__ $$aVDB
000636663 980__ $$aUNRESTRICTED
000636663 980__ $$aI:(DE-H253)CQTA-20221102
000636663 9801_ $$aFullTexts