001     636256
005     20250817054535.0
024 7 _ |a 10.1039/D5TA02960K
|2 doi
024 7 _ |a 2050-7488
|2 ISSN
024 7 _ |a 2050-7496
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2025-03638
|2 datacite_doi
024 7 _ |a altmetric:177820101
|2 altmetric
037 _ _ |a PUBDB-2025-03638
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Guo, Weijia
|0 P:(DE-H253)PIP1114336
|b 0
245 _ _ |a Bridged Ov–Ru–O–Co coordination induced by Co$^{2+δ}$ substitution in Co/RuO$_2$ catalysts for enhanced alkaline hydrogen and oxygen evolution reactions
260 _ _ |a London ˜[u.a.]œ
|c 2025
|b RSC
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1755074812_2711073
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Tailoring a highly active and stable alkaline electrocatalyst endowed with an ultra-low electron transfer energy barrier for hydrogen/oxygen evolution reactions (HER/OER) has remained elusive to date. Herein, a defect-rich nanoporous Co$^{2+d}$ -incorporated RuO$_2$ (Co/RuO$_2$) catalyst was proposed that offered low overpotential and good stability for alkaline HER/OER. Ov–Ru–O–Co coordination under the electron coupling constructed by slight anchoring of Co$^{2+d}$ at Ru$^{4+d}$ sites played a pivotal role in optimizing the reaction energy barrier of the intermediates. Theoretical calculations suggested that Ov–Ru–O–Co coordination effectively optimized the primary active site by modulating the electron structure and position of the d-band center. This refinement enhanced the adsorption/desorption of reactive species, facilitating the overall progression of the catalytic reactions. Consequently, the optimal Co/RuO$_2$-1/50 catalyst achieved an ultralow overpotential at 10 mA cm$^{−1}$ , an impressive Tafel slope for both HER (26 mV, 54 mV dec$^{−1}$ ) and OER (243 mV, 88 mV dec$^{−1}$ ) and an outstanding stability for over 100 h for OER. This work offers a practical roadmap for the development of noble metal-based electrocatalysts that exhibit high activity/stability for alkaline HER/OER.
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 0
536 _ _ |a SWEDEN-DESY - SWEDEN-DESY Collaboration (2020_Join2-SWEDEN-DESY)
|0 G:(DE-HGF)2020_Join2-SWEDEN-DESY
|c 2020_Join2-SWEDEN-DESY
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P21.2
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P21.2-20150101
|6 EXP:(DE-H253)P-P21.2-20150101
|x 0
700 1 _ |a Wang, Zhan
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Zhou, Yangdong
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Wang, Tongde
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Zhu, Gaoming
|0 P:(DE-H253)PIP1084066
|b 4
700 1 _ |a Akhtar, Farid
|0 P:(DE-H253)PIP1107253
|b 5
700 1 _ |a Koudakan, Payam Ahmadian
|0 0000-0003-2535-3155
|b 6
700 1 _ |a Zhang, Baojing
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Jiang, Jiangmin
|0 P:(DE-HGF)0
|b 8
|e Corresponding author
700 1 _ |a Pan, Shuaijun
|0 0000-0001-6370-2470
|b 9
|e Corresponding author
700 1 _ |a Feng, Peizhong
|0 P:(DE-HGF)0
|b 10
|e Corresponding author
773 _ _ |a 10.1039/D5TA02960K
|g Vol. 13, no. 28, p. 22414 - 22424
|0 PERI:(DE-600)2702232-8
|n 28
|p 22414 - 22424
|t Journal of materials chemistry / A
|v 13
|y 2025
|x 2050-7488
856 4 _ |u https://bib-pubdb1.desy.de/record/636256/files/d5ta02960k.pdf
856 4 _ |y Published on 2025-06-04. Available in OpenAccess from 2026-06-04.
|u https://bib-pubdb1.desy.de/record/636256/files/Main%20article%281%29.pdf
856 4 _ |x pdfa
|u https://bib-pubdb1.desy.de/record/636256/files/d5ta02960k.pdf?subformat=pdfa
856 4 _ |y Published on 2025-06-04. Available in OpenAccess from 2026-06-04.
|x pdfa
|u https://bib-pubdb1.desy.de/record/636256/files/Main%20article%281%29.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:636256
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1114336
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 P:(DE-H253)PIP1084066
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-H253)PIP1107253
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-05
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-05
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-05
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b J MATER CHEM A : 2022
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-05
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J MATER CHEM A : 2022
|d 2024-12-05
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2024-12-05
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-05
920 1 _ |0 I:(DE-H253)FS_DOOR-User-20241023
|k FS DOOR-User
|l FS DOOR-User
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)FS_DOOR-User-20241023
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21