000636254 001__ 636254
000636254 005__ 20250819212411.0
000636254 0247_ $$2doi$$a10.1021/acscatal.5c03605
000636254 0247_ $$2datacite_doi$$a10.3204/PUBDB-2025-03636
000636254 037__ $$aPUBDB-2025-03636
000636254 041__ $$aEnglish
000636254 082__ $$a540
000636254 1001_ $$0P:(DE-HGF)0$$aAntil, Neha$$b0
000636254 245__ $$aRuthenium Nanoparticles on Water-Stable Supported Ionic Liquid Phases as Catalytic Systems for Aqueous Phase CO$_2$ Hydrogenation
000636254 260__ $$aWashington, DC$$bACS$$c2025
000636254 3367_ $$2DRIVER$$aarticle
000636254 3367_ $$2DataCite$$aOutput Types/Journal article
000636254 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1755603340_4427
000636254 3367_ $$2BibTeX$$aARTICLE
000636254 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000636254 3367_ $$00$$2EndNote$$aJournal Article
000636254 520__ $$aThe first example of a hydrothermally stable Supported Ionic Liquid Phase (SILP) material was designed and used successfully as a support for ruthenium nanoparticles (Ru NPs) in catalytic hydrogenation of CO$_2$ to formic acid in water/amine media. Imidazolium-based ionic liquids (ILs) were grafted on activated carbon (AC) through the formation of robust carbon–carbon bonds via diazotization, followed by deposition of Ru NPs using an organometallic approach. Compared to reference materials, the presence of the IL on the solid material led not only to improved catalyst performance of the nanoparticles but also to higher formic acid concentrations in the reaction mixture due to additional thermodynamic stabilization of the product. The Ru@SILPAC catalysts showed high activity (turnover frequencies (TOFs) exceeding 3000 h$^{–1}$), productivity (turnover numbers (TONs) up to 15,000 in a single batch), and stability (10 recycling with no apparent loss of activity). These results define a new benchmark for NP-based catalysts in CO2 hydrogenation to formic acid and suggest promising potential for the application of such NP@SILP materials in aqueous phase hydrogenation reactions in general.
000636254 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x0
000636254 536__ $$0G:(DE-H253)I-20230324$$aFS-Proposal: I-20230324 (I-20230324)$$cI-20230324$$x1
000636254 536__ $$0G:(GEPRIS)390919832$$aDFG project G:(GEPRIS)390919832 - EXC 2186: Das Fuel Science Center – Adaptive Umwandlungssysteme für erneuerbare Energie- und Kohlenstoffquellen (390919832)$$c390919832$$x2
000636254 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000636254 693__ $$0EXP:(DE-H253)P-P65-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P65-20150101$$aPETRA III$$fPETRA Beamline P65$$x0
000636254 7001_ $$0P:(DE-HGF)0$$aLouis Anandaraj, Savarithai Jenani$$b1
000636254 7001_ $$0P:(DE-H253)PIP1085988$$aKang, Liqun$$b2
000636254 7001_ $$0P:(DE-HGF)0$$aGhazi Zahedi, Hooman$$b3
000636254 7001_ $$0P:(DE-H253)PIP1015325$$aDeBeer, Serena$$b4
000636254 7001_ $$0P:(DE-HGF)0$$aLeitner, Walter$$b5$$eCorresponding author
000636254 7001_ $$0P:(DE-H253)PIP1086018$$aBordet, Alexis$$b6$$eCorresponding author
000636254 773__ $$0PERI:(DE-600)2584887-2$$a10.1021/acscatal.5c03605$$gp. 14601 - 14610$$p14601 - 14610$$tACS catalysis$$v15$$x2155-5435$$y2025
000636254 8564_ $$uhttps://pubs.acs.org/doi/10.1021/acscatal.5c03605
000636254 8564_ $$uhttps://bib-pubdb1.desy.de/record/636254/files/Manuscript%20%26%20SI.pdf$$yOpenAccess
000636254 8564_ $$uhttps://bib-pubdb1.desy.de/record/636254/files/Manuscript%20%26%20SI.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000636254 909CO $$ooai:bib-pubdb1.desy.de:636254$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
000636254 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1085988$$aExternal Institute$$b2$$kExtern
000636254 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1015325$$aExternal Institute$$b4$$kExtern
000636254 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1086018$$aExternal Institute$$b6$$kExtern
000636254 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x0
000636254 9141_ $$y2025
000636254 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-07
000636254 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-07
000636254 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000636254 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS CATAL : 2022$$d2025-01-07
000636254 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-07
000636254 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bACS CATAL : 2022$$d2025-01-07
000636254 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-07
000636254 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000636254 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2025-01-07
000636254 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-07
000636254 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-07
000636254 9201_ $$0I:(DE-H253)FS_DOOR-User-20241023$$kFS DOOR-User$$lFS DOOR-User$$x0
000636254 980__ $$ajournal
000636254 980__ $$aVDB
000636254 980__ $$aUNRESTRICTED
000636254 980__ $$aI:(DE-H253)FS_DOOR-User-20241023
000636254 9801_ $$aFullTexts