Home > Publications database > Layer Width Engineering in Carbon Nitride for Enhanced Exciton Dissociation and Solar Fuel Generation > print |
001 | 634808 | ||
005 | 20250825212459.0 | ||
024 | 7 | _ | |a 10.1021/acsmaterialslett.5c00178 |2 doi |
037 | _ | _ | |a PUBDB-2025-02629 |
041 | _ | _ | |a English |
082 | _ | _ | |a 540 |
100 | 1 | _ | |a Roy, Raj Sekhar |0 P:(DE-H253)PIP1099185 |b 0 |
245 | _ | _ | |a Layer Width Engineering in Carbon Nitride for Enhanced Exciton Dissociation and Solar Fuel Generation |
260 | _ | _ | |a Washington, DC |c 2025 |b ACS Publications |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1756110462_2536570 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a Waiting for fulltext |
520 | _ | _ | |a Photocatalytic H2 and H2O2 production using graphitic carbon nitride (g-C3N4) offers promising renewable energy prospects but suffers from rapid exciton recombination, which can be mitigated by K+-insertion-driven enhanced interlayer electron–hole separation. However, limited K+ insertion remains a bottleneck due to inadequate ion-insertion channels. Herein, we present an engineered g-C3N4 with expanded layer widths for facile ion diffusion, increasing K+ insertion by >250%. This leads to significant layer contraction post K+ insertion (∼3%, 1.5 times larger than before) due to stronger electrostatic attraction, resulting in weaker exciton binding energy (91 meV, ∼57% diminished), near-complete suppression of photoluminescence, and doubling of excited-state electron lifetime as revealed by femtosecond decay kinetics. These improvements led to ∼25 and ∼140 times increments over bare g-C3N4 in H2 and H2O2 production rates, respectively, under visible light. Considering the earth-abundant constituents of g-C3N4, our work establishes a novel design strategy for a highly active, sustainable photocatalyst. |
536 | _ | _ | |a 6G3 - PETRA III (DESY) (POF4-6G3) |0 G:(DE-HGF)POF4-6G3 |c POF4-6G3 |f POF IV |x 0 |
536 | _ | _ | |a INDIA-DESY - INDIA-DESY Collaboration (2020_Join2-INDIA-DESY) |0 G:(DE-HGF)2020_Join2-INDIA-DESY |c 2020_Join2-INDIA-DESY |x 1 |
536 | _ | _ | |a FS-Proposal: I-20220874 (I-20220874) |0 G:(DE-H253)I-20220874 |c I-20220874 |x 2 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de |
693 | _ | _ | |a PETRA III |f PETRA Beamline P65 |1 EXP:(DE-H253)PETRAIII-20150101 |0 EXP:(DE-H253)P-P65-20150101 |6 EXP:(DE-H253)P-P65-20150101 |x 0 |
700 | 1 | _ | |a Sil, Supriya |b 1 |
700 | 1 | _ | |a Mishra, Samita |b 2 |
700 | 1 | _ | |a Banoo, Maqsuma |b 3 |
700 | 1 | _ | |a Swarnkar, Abhishek |0 0000-0001-7074-2729 |b 4 |
700 | 1 | _ | |a Kommula, Bramhaiah |0 0000-0002-8302-4109 |b 5 |
700 | 1 | _ | |a De, Arijit K. |0 0000-0002-5938-2766 |b 6 |
700 | 1 | _ | |a Gautam, Ujjal |0 P:(DE-H253)PIP1085398 |b 7 |e Corresponding author |
773 | _ | _ | |a 10.1021/acsmaterialslett.5c00178 |g Vol. 7, no. 4, p. 1385 - 1393 |0 PERI:(DE-600)3004109-0 |n 4 |p 1385 - 1393 |t ACS materials letters |v 7 |y 2025 |x 2639-4979 |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/634808/files/roy-et-al-2025-layer-width-engineering-in-carbon-nitride-for-enhanced-exciton-dissociation-and-solar-fuel-generation.pdf |y Restricted |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/634808/files/roy-et-al-2025-layer-width-engineering-in-carbon-nitride-for-enhanced-exciton-dissociation-and-solar-fuel-generation.pdf?subformat=pdfa |x pdfa |y Restricted |
909 | C | O | |o oai:bib-pubdb1.desy.de:634808 |p VDB |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 0 |6 P:(DE-H253)PIP1099185 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 7 |6 P:(DE-H253)PIP1085398 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Großgeräte: Materie |1 G:(DE-HGF)POF4-6G0 |0 G:(DE-HGF)POF4-6G3 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v PETRA III (DESY) |x 0 |
914 | 1 | _ | |y 2025 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ACS MATER LETT : 2022 |d 2025-01-07 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2025-01-07 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2025-01-07 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2025-01-07 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2025-01-07 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2025-01-07 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2025-01-07 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2025-01-07 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2025-01-07 |
915 | _ | _ | |a IF >= 10 |0 StatID:(DE-HGF)9910 |2 StatID |b ACS MATER LETT : 2022 |d 2025-01-07 |
920 | 1 | _ | |0 I:(DE-H253)FS_DOOR-User-20241023 |k FS DOOR-User |l FS DOOR-User |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-H253)FS_DOOR-User-20241023 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|