001     634793
005     20250824054607.0
024 7 _ |a 10.1107/S1600577524003618
|2 doi
024 7 _ |a 0909-0495
|2 ISSN
024 7 _ |a 1600-5775
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2025-02617
|2 datacite_doi
024 7 _ |a altmetric:164465183
|2 altmetric
024 7 _ |a pmid:38861370
|2 pmid
037 _ _ |a PUBDB-2025-02617
041 _ _ |a English
082 _ _ |a 550
100 1 _ |a Burchert, Jan-Philipp
|0 P:(DE-H253)PIP1080910
|b 0
245 _ _ |a X-ray phase-contrast tomography of cells manipulated with an optical stretcher
260 _ _ |a Chester
|c 2024
|b IUCr
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1755861843_1066783
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a X-rays can penetrate deeply into biological cells and thus allow for examination of their internal structures with high spatial resolution. In this study, X-ray phase-contrast imaging and tomography is combined with an X-ray-compatible optical stretcher and microfluidic sample delivery. Using this setup, individual cells can be kept in suspension while they are examined with the X-ray beam at a synchrotron. From the recorded holograms, 2D phase shift images that are proportional to the projected local electron density of the investigated cell can be calculated. From the tomographic reconstruction of multiple such projections the 3D electron density can be obtained. The cells can thus be studied in a hydrated or even living state, thus avoiding artifacts from freezing, drying or embedding, and can in principle also be subjected to different sample environments or mechanical strains. This combination of techniques is applied to living as well as fixed and stained NIH3T3 mouse fibroblasts and the effect of the beam energy on the phase shifts is investigated. Furthermore, a 3D algebraic reconstruction scheme and a dedicated mathematical description is used to follow the motion of the trapped cells in the optical stretcher for multiple rotations.
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 0
536 _ _ |a DFG project G:(GEPRIS)390729940 - EXC 2067: Multiscale Bioimaging: Von molekularen Maschinen zu Netzwerken erregbarer Zellen (390729940)
|0 G:(GEPRIS)390729940
|c 390729940
|x 1
536 _ _ |a DFG project G:(GEPRIS)429958739 - Alternative Assemblierungs-Mechanismen von pathologischen Desmin-Mutanten: Filamentbildung im Wettbewerb mit Aggregation (429958739)
|0 G:(GEPRIS)429958739
|c 429958739
|x 2
536 _ _ |a DFG project G:(GEPRIS)460248799 - DAPHNE4NFDI - DAten aus PHoton- und Neutronen Experimenten für NFDI (460248799)
|0 G:(GEPRIS)460248799
|c 460248799
|x 3
536 _ _ |a 05K22MG3 - FastScan: schnelle, korrelative Abbildung biologischer Materie mit scanning SAXS und optischer Fluoreszenzmikroskopie. (BMBF-05K22MG3)
|0 G:(DE-Ds200)BMBF-05K22MG3
|c BMBF-05K22MG3
|f 05K22MG3
|x 4
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P10
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P10-20150101
|6 EXP:(DE-H253)P-P10-20150101
|x 0
700 1 _ |a Frohn, Jasper
|0 P:(DE-H253)PIP1019648
|b 1
700 1 _ |a Rölleke, Ulrike
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Bruns, Hendrik
|0 P:(DE-H253)PIP1089190
|b 3
700 1 _ |a Yu, Boram
|0 P:(DE-H253)PIP1100945
|b 4
700 1 _ |a Gleber, Sophie-Charlotte
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Stange, Roland
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Busse, Madleen
|0 P:(DE-H253)PIP1090138
|b 7
700 1 _ |a Osterhoff, Markus
|0 P:(DE-H253)PIP1011696
|b 8
700 1 _ |a Salditt, Tim
|0 P:(DE-H253)PIP1007848
|b 9
700 1 _ |a Koester, Sarah
|0 P:(DE-H253)PIP1009250
|b 10
|e Corresponding author
773 _ _ |a 10.1107/S1600577524003618
|g Vol. 31, no. 4, p. 923 - 935
|0 PERI:(DE-600)2021413-3
|n 4
|p 923 - 935
|t Journal of synchrotron radiation
|v 31
|y 2024
|x 0909-0495
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/634793/files/vl5023.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/634793/files/vl5023.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:634793
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1080910
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-H253)PIP1019648
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-H253)PIP1089190
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 P:(DE-H253)PIP1100945
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 7
|6 P:(DE-H253)PIP1090138
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 8
|6 P:(DE-H253)PIP1011696
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 8
|6 P:(DE-H253)PIP1011696
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 9
|6 P:(DE-H253)PIP1007848
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 10
|6 P:(DE-H253)PIP1009250
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 0
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-06
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2025-01-06
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J SYNCHROTRON RADIAT : 2022
|d 2025-01-06
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2025-01-06
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-03-08T13:56:53Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-03-08T13:56:53Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-06
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-06
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2025-01-06
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2025-01-06
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-06
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2025-01-06
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-06
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21