000634793 001__ 634793
000634793 005__ 20250824054607.0
000634793 0247_ $$2doi$$a10.1107/S1600577524003618
000634793 0247_ $$2ISSN$$a0909-0495
000634793 0247_ $$2ISSN$$a1600-5775
000634793 0247_ $$2datacite_doi$$a10.3204/PUBDB-2025-02617
000634793 0247_ $$2altmetric$$aaltmetric:164465183
000634793 0247_ $$2pmid$$apmid:38861370
000634793 037__ $$aPUBDB-2025-02617
000634793 041__ $$aEnglish
000634793 082__ $$a550
000634793 1001_ $$0P:(DE-H253)PIP1080910$$aBurchert, Jan-Philipp$$b0
000634793 245__ $$aX-ray phase-contrast tomography of cells manipulated with an optical stretcher
000634793 260__ $$aChester$$bIUCr$$c2024
000634793 3367_ $$2DRIVER$$aarticle
000634793 3367_ $$2DataCite$$aOutput Types/Journal article
000634793 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1755861843_1066783
000634793 3367_ $$2BibTeX$$aARTICLE
000634793 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000634793 3367_ $$00$$2EndNote$$aJournal Article
000634793 520__ $$aX-rays can penetrate deeply into biological cells and thus allow for examination of their internal structures with high spatial resolution. In this study, X-ray phase-contrast imaging and tomography is combined with an X-ray-compatible optical stretcher and microfluidic sample delivery. Using this setup, individual cells can be kept in suspension while they are examined with the X-ray beam at a synchrotron. From the recorded holograms, 2D phase shift images that are proportional to the projected local electron density of the investigated cell can be calculated. From the tomographic reconstruction of multiple such projections the 3D electron density can be obtained. The cells can thus be studied in a hydrated or even living state, thus avoiding artifacts from freezing, drying or embedding, and can in principle also be subjected to different sample environments or mechanical strains. This combination of techniques is applied to living as well as fixed and stained NIH3T3 mouse fibroblasts and the effect of the beam energy on the phase shifts is investigated. Furthermore, a 3D algebraic reconstruction scheme and a dedicated mathematical description is used to follow the motion of the trapped cells in the optical stretcher for multiple rotations. 
000634793 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x0
000634793 536__ $$0G:(GEPRIS)390729940$$aDFG project G:(GEPRIS)390729940 - EXC 2067: Multiscale Bioimaging: Von molekularen Maschinen zu Netzwerken erregbarer Zellen (390729940)$$c390729940$$x1
000634793 536__ $$0G:(GEPRIS)429958739$$aDFG project G:(GEPRIS)429958739 - Alternative Assemblierungs-Mechanismen von pathologischen Desmin-Mutanten: Filamentbildung im Wettbewerb mit Aggregation (429958739)$$c429958739$$x2
000634793 536__ $$0G:(GEPRIS)460248799$$aDFG project G:(GEPRIS)460248799 - DAPHNE4NFDI - DAten aus PHoton- und Neutronen Experimenten für NFDI (460248799)$$c460248799$$x3
000634793 536__ $$0G:(DE-Ds200)BMBF-05K22MG3$$a05K22MG3 - FastScan: schnelle, korrelative Abbildung biologischer Materie mit scanning SAXS und optischer Fluoreszenzmikroskopie. (BMBF-05K22MG3)$$cBMBF-05K22MG3$$f05K22MG3$$x4
000634793 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000634793 693__ $$0EXP:(DE-H253)P-P10-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P10-20150101$$aPETRA III$$fPETRA Beamline P10$$x0
000634793 7001_ $$0P:(DE-H253)PIP1019648$$aFrohn, Jasper$$b1
000634793 7001_ $$0P:(DE-HGF)0$$aRölleke, Ulrike$$b2
000634793 7001_ $$0P:(DE-H253)PIP1089190$$aBruns, Hendrik$$b3
000634793 7001_ $$0P:(DE-H253)PIP1100945$$aYu, Boram$$b4
000634793 7001_ $$0P:(DE-HGF)0$$aGleber, Sophie-Charlotte$$b5
000634793 7001_ $$0P:(DE-HGF)0$$aStange, Roland$$b6
000634793 7001_ $$0P:(DE-H253)PIP1090138$$aBusse, Madleen$$b7
000634793 7001_ $$0P:(DE-H253)PIP1011696$$aOsterhoff, Markus$$b8
000634793 7001_ $$0P:(DE-H253)PIP1007848$$aSalditt, Tim$$b9
000634793 7001_ $$0P:(DE-H253)PIP1009250$$aKoester, Sarah$$b10$$eCorresponding author
000634793 773__ $$0PERI:(DE-600)2021413-3$$a10.1107/S1600577524003618$$gVol. 31, no. 4, p. 923 - 935$$n4$$p923 - 935$$tJournal of synchrotron radiation$$v31$$x0909-0495$$y2024
000634793 8564_ $$uhttps://bib-pubdb1.desy.de/record/634793/files/vl5023.pdf$$yOpenAccess
000634793 8564_ $$uhttps://bib-pubdb1.desy.de/record/634793/files/vl5023.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000634793 909CO $$ooai:bib-pubdb1.desy.de:634793$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000634793 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1080910$$aExternal Institute$$b0$$kExtern
000634793 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1019648$$aExternal Institute$$b1$$kExtern
000634793 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1089190$$aExternal Institute$$b3$$kExtern
000634793 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1100945$$aExternal Institute$$b4$$kExtern
000634793 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1090138$$aExternal Institute$$b7$$kExtern
000634793 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1011696$$aEuropean XFEL$$b8$$kXFEL.EU
000634793 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1011696$$aExternal Institute$$b8$$kExtern
000634793 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1007848$$aExternal Institute$$b9$$kExtern
000634793 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1009250$$aExternal Institute$$b10$$kExtern
000634793 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x0
000634793 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-06
000634793 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-06
000634793 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000634793 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2025-01-06
000634793 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ SYNCHROTRON RADIAT : 2022$$d2025-01-06
000634793 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2025-01-06$$wger
000634793 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-03-08T13:56:53Z
000634793 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-03-08T13:56:53Z
000634793 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-06
000634793 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2025-01-06
000634793 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-06
000634793 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2025-01-06
000634793 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000634793 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2025-01-06
000634793 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2025-01-06
000634793 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2025-01-06
000634793 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-06
000634793 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2025-01-06$$wger
000634793 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-06
000634793 9201_ $$0I:(DE-H253)HAS-User-20120731$$kDOOR ; HAS-User$$lDOOR-User$$x0
000634793 980__ $$ajournal
000634793 980__ $$aVDB
000634793 980__ $$aUNRESTRICTED
000634793 980__ $$aI:(DE-H253)HAS-User-20120731
000634793 9801_ $$aFullTexts