001     634671
005     20250818212458.0
024 7 _ |a 10.1088/1742-6596/2420/1/012026
|2 doi
024 7 _ |a Chen:2022xzn
|2 INSPIRETeX
024 7 _ |a inspire:2138080
|2 inspire
024 7 _ |a 1742-6588
|2 ISSN
024 7 _ |a 1742-6596
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2025-02585
|2 datacite_doi
037 _ _ |a PUBDB-2025-02585
041 _ _ |a English
082 _ _ |a 530
088 _ _ |a DESY-22-076
|2 DESY
100 1 _ |a Chen, Ye Lining
|0 P:(DE-H253)PIP1031145
|b 0
|e Corresponding author
111 2 _ |a 13th International Particle Accelerator Conference
|g IPAC 2022
|c Muangthong Thani
|d 2022-06-17 - 2022-06-22
|w Thailand
245 _ _ |a Virtual commissioning of the European XFEL for advanced user experiments at photon energies beyond 25 keV using low-emittance electron beams
260 _ _ |a Bristol
|c 2022
|b IOP Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Contribution to a conference proceedings
|0 PUB:(DE-HGF)8
|2 PUB:(DE-HGF)
|m contrib
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1755505732_3983138
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Growing interests in ultra-hard X-rays are pushing forward the frontier of commissioning the European X-ray Free-Electron Laser (XFEL) for routine operation towards the sub-ångström regime, where a photon energy of 25 keV (0.5 Å) and above is desired. Such X-rays allow for larger penetration depths and enable the investigation of materials in highly absorbing environments. Delivering the requested X-rays to user experiments is of crucial importance for the XFEL development. Unique capabilities of the European XFEL are formed by combining a high energy linac and the long variable-gap undulator systems for generating intense X-rays at 25 keV and pushing the limit even further to 30 keV. However, the FEL performance relies on achievable electron bunch qualities. Low-emittance electron bunch production, and the associated start-to-end modelling of beam physics thus becomes a prerequisite to dig into the XFEL potentials. Here, we present the obtained simulation results from a virtual commissioning of the XFEL for the user experiments at 25 keV and beyond, including the optimized electron bunch qualities and corresponding FEL lasing performance. Experimental results at 30 keV from the first test run are presented.
536 _ _ |a 621 - Accelerator Research and Development (POF4-621)
|0 G:(DE-HGF)POF4-621
|c POF4-621
|f POF IV
|x 0
536 _ _ |a 6G13 - Accelerator of European XFEL (POF4-6G13)
|0 G:(DE-HGF)POF4-6G13
|c POF4-6G13
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, INSPIRE, Journals: bib-pubdb1.desy.de
693 _ _ |a XFEL
|e Facility (machine) XFEL
|1 EXP:(DE-H253)XFEL-20150101
|0 EXP:(DE-H253)XFEL(machine)-20150101
|5 EXP:(DE-H253)XFEL(machine)-20150101
|x 0
700 1 _ |a Brinker, Frank
|0 P:(DE-H253)PIP1002841
|b 1
|u desy
700 1 _ |a Decking, Winfried
|0 P:(DE-H253)PIP1002733
|b 2
|u desy
700 1 _ |a Scholz, Matthias
|0 P:(DE-H253)PIP1012553
|b 3
|u desy
700 1 _ |a Winkelmann, Lutz
|0 P:(DE-H253)PIP1020781
|b 4
|u desy
700 1 _ |a Zhu, Zihan
|0 P:(DE-H253)PIP1097123
|b 5
773 _ _ |a 10.1088/1742-6596/2420/1/012026
|g Vol. IPAC2022, no. 1, p. 012026 -
|0 PERI:(DE-600)2166409-2
|n 1
|p 012026
|t Journal of physics / Conference Series
|v IPAC2022
|y 2022
|x 1742-6588
787 0 _ |a Chen, Ye Lining et.al.
|d JACoW Publishing, Geneva, Switzerland, 2022
|i IsMemberOf
|0 PUBDB-2022-01954
|r DESY-22-076
|t Virtual Commissioning of the European XFEL for Advanced User Experiments at Photon Energies Beyond 25 KEV Using Low-Emittance Electron Beams
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/634671/files/Chen_2023_J._Phys.__Conf._Ser._2420_012026.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/634671/files/Chen_2023_J._Phys.__Conf._Ser._2420_012026.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:634671
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 0
|6 P:(DE-H253)PIP1031145
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 1
|6 P:(DE-H253)PIP1002841
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 2
|6 P:(DE-H253)PIP1002733
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 2
|6 P:(DE-H253)PIP1002733
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 3
|6 P:(DE-H253)PIP1012553
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 4
|6 P:(DE-H253)PIP1020781
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-H253)PIP1097123
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Materie und Technologie
|1 G:(DE-HGF)POF4-620
|0 G:(DE-HGF)POF4-621
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Accelerator Research and Development
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G13
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Accelerator of European XFEL
|x 1
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-20
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-20
|w ger
920 1 _ |0 I:(DE-H253)MXL-20160301
|k MXL
|l Koordination des XFEL-Beschleunigers
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a contrib
980 _ _ |a I:(DE-H253)MXL-20160301
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21