000634671 001__ 634671
000634671 005__ 20250818212458.0
000634671 0247_ $$2doi$$a10.1088/1742-6596/2420/1/012026
000634671 0247_ $$2INSPIRETeX$$aChen:2022xzn
000634671 0247_ $$2inspire$$ainspire:2138080
000634671 0247_ $$2ISSN$$a1742-6588
000634671 0247_ $$2ISSN$$a1742-6596
000634671 0247_ $$2datacite_doi$$a10.3204/PUBDB-2025-02585
000634671 037__ $$aPUBDB-2025-02585
000634671 041__ $$aEnglish
000634671 082__ $$a530
000634671 088__ $$2DESY$$aDESY-22-076
000634671 1001_ $$0P:(DE-H253)PIP1031145$$aChen, Ye Lining$$b0$$eCorresponding author
000634671 1112_ $$a13th International Particle Accelerator Conference$$cMuangthong Thani$$d2022-06-17 - 2022-06-22$$gIPAC 2022$$wThailand
000634671 245__ $$aVirtual commissioning of the European XFEL for advanced user experiments at photon energies beyond 25 keV using low-emittance electron beams
000634671 260__ $$aBristol$$bIOP Publ.$$c2022
000634671 3367_ $$2DRIVER$$aarticle
000634671 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$mcontrib
000634671 3367_ $$2DataCite$$aOutput Types/Journal article
000634671 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1755505732_3983138
000634671 3367_ $$2BibTeX$$aARTICLE
000634671 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000634671 3367_ $$00$$2EndNote$$aJournal Article
000634671 520__ $$aGrowing interests in ultra-hard X-rays are pushing forward the frontier of commissioning the European X-ray Free-Electron Laser (XFEL) for routine operation towards the sub-ångström regime, where a photon energy of 25 keV (0.5 Å) and above is desired. Such X-rays allow for larger penetration depths and enable the investigation of materials in highly absorbing environments. Delivering the requested X-rays to user experiments is of crucial importance for the XFEL development. Unique capabilities of the European XFEL are formed by combining a high energy linac and the long variable-gap undulator systems for generating intense X-rays at 25 keV and pushing the limit even further to 30 keV. However, the FEL performance relies on achievable electron bunch qualities. Low-emittance electron bunch production, and the associated start-to-end modelling of beam physics thus becomes a prerequisite to dig into the XFEL potentials. Here, we present the obtained simulation results from a virtual commissioning of the XFEL for the user experiments at 25 keV and beyond, including the optimized electron bunch qualities and corresponding FEL lasing performance. Experimental results at 30 keV from the first test run are presented.
000634671 536__ $$0G:(DE-HGF)POF4-621$$a621 - Accelerator Research and Development (POF4-621)$$cPOF4-621$$fPOF IV$$x0
000634671 536__ $$0G:(DE-HGF)POF4-6G13$$a6G13 - Accelerator of European XFEL (POF4-6G13)$$cPOF4-6G13$$fPOF IV$$x1
000634671 588__ $$aDataset connected to CrossRef, INSPIRE, Journals: bib-pubdb1.desy.de
000634671 693__ $$0EXP:(DE-H253)XFEL(machine)-20150101$$1EXP:(DE-H253)XFEL-20150101$$5EXP:(DE-H253)XFEL(machine)-20150101$$aXFEL$$eFacility (machine) XFEL$$x0
000634671 7001_ $$0P:(DE-H253)PIP1002841$$aBrinker, Frank$$b1$$udesy
000634671 7001_ $$0P:(DE-H253)PIP1002733$$aDecking, Winfried$$b2$$udesy
000634671 7001_ $$0P:(DE-H253)PIP1012553$$aScholz, Matthias$$b3$$udesy
000634671 7001_ $$0P:(DE-H253)PIP1020781$$aWinkelmann, Lutz$$b4$$udesy
000634671 7001_ $$0P:(DE-H253)PIP1097123$$aZhu, Zihan$$b5
000634671 773__ $$0PERI:(DE-600)2166409-2$$a10.1088/1742-6596/2420/1/012026$$gVol. IPAC2022, no. 1, p. 012026 -$$n1$$p012026$$tJournal of physics / Conference Series$$vIPAC2022$$x1742-6588$$y2022
000634671 7870_ $$0PUBDB-2022-01954$$aChen, Ye Lining et.al.$$dJACoW Publishing, Geneva, Switzerland, 2022$$iIsMemberOf$$rDESY-22-076$$tVirtual Commissioning of the European XFEL for Advanced User Experiments at Photon Energies Beyond 25 KEV Using Low-Emittance Electron Beams
000634671 8564_ $$uhttps://bib-pubdb1.desy.de/record/634671/files/Chen_2023_J._Phys.__Conf._Ser._2420_012026.pdf$$yOpenAccess
000634671 8564_ $$uhttps://bib-pubdb1.desy.de/record/634671/files/Chen_2023_J._Phys.__Conf._Ser._2420_012026.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000634671 909CO $$ooai:bib-pubdb1.desy.de:634671$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
000634671 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1031145$$aDeutsches Elektronen-Synchrotron$$b0$$kDESY
000634671 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1002841$$aDeutsches Elektronen-Synchrotron$$b1$$kDESY
000634671 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1002733$$aDeutsches Elektronen-Synchrotron$$b2$$kDESY
000634671 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1002733$$aEuropean XFEL$$b2$$kXFEL.EU
000634671 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1012553$$aDeutsches Elektronen-Synchrotron$$b3$$kDESY
000634671 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1020781$$aDeutsches Elektronen-Synchrotron$$b4$$kDESY
000634671 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1097123$$aExternal Institute$$b5$$kExtern
000634671 9131_ $$0G:(DE-HGF)POF4-621$$1G:(DE-HGF)POF4-620$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMaterie und Technologie$$vAccelerator Research and Development$$x0
000634671 9131_ $$0G:(DE-HGF)POF4-6G13$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vAccelerator of European XFEL$$x1
000634671 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000634671 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-20
000634671 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-20
000634671 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000634671 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-20$$wger
000634671 9201_ $$0I:(DE-H253)MXL-20160301$$kMXL$$lKoordination des XFEL-Beschleunigers$$x0
000634671 980__ $$ajournal
000634671 980__ $$aVDB
000634671 980__ $$aUNRESTRICTED
000634671 980__ $$acontrib
000634671 980__ $$aI:(DE-H253)MXL-20160301
000634671 9801_ $$aFullTexts