Home > Publications database > Exploring virus-host interactions through combined proteomic approaches identifies BANF1 as a new essential factor for African Swine Fever Virus > print |
001 | 634624 | ||
005 | 20250901212846.0 | ||
024 | 7 | _ | |a 10.1016/j.mcpro.2025.101038 |2 doi |
024 | 7 | _ | |a 1535-9476 |2 ISSN |
024 | 7 | _ | |a 1535-9484 |2 ISSN |
024 | 7 | _ | |a 10.3204/PUBDB-2025-02538 |2 datacite_doi |
037 | _ | _ | |a PUBDB-2025-02538 |
041 | _ | _ | |a English |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Dupré, Juliette |0 0000-0002-3121-6563 |b 0 |
245 | _ | _ | |a Exploring virus-host interactions through combined proteomic approaches identifies BANF1 as a new essential factor for African Swine Fever Virus |
260 | _ | _ | |a Bethesda, Md. |c 2025 |b The American Society for Biochemistry and Molecular Biology |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1756725647_909886 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a African swine fever virus (ASFV) causes a lethal disease in pigs and represents a significant threat to the global pork industry due to the lack of effective vaccines or treatments. Despite intensive research, many ASFV proteins remain uncharacterized. This study aimed to elucidate the functions of two ASFV proteins, pMGF360-21R and pA151R, through comprehensive analysis of their interactions with host proteins. Using affinity purification-mass spectrometry and yeast two-hybrid screening approaches, we identified the host protein barrier-to-autointegration factor 1 (BANF1) as a key interactor of both viral proteins. Biochemical and colocalization assays confirmed these interactions and demonstrated that MGF360-21R and A151R expression leads to cytoplasmic relocation of BANF1. Functionally, BANF1 silencing significantly reduced ASFV replication, indicating its proviral role. Given BANF1's established function in regulating the cGAS/STING-dependent type I interferon (IFN-I) response, we postulated that A151R and MGF360-21R could inhibit this pathway. Using different strategies, we showed that both A151R and MGF360-21R did indeed inhibit IFN-I induction. Generation of ASFV deficient of A151R or MGF360-21R showed that both mutant viruses enhanced the host IFN response in primary porcine macrophages compared to wild-type virus. However, their capacity to inhibit this pathway could occur through mechanisms independent of BANF1. Proteomic analysis of BANF1 interactors during ASFV infection highlighted potentially roles in chromatin remodeling, nuclear transport, and innate immune response pathways. Altogether, our data provide new insights into ASFV-host interactions, identifying BANF1 as an important new host factor required for replication and uncovering novel functions for A151R and MGF360-21R. |
536 | _ | _ | |a 899 - ohne Topic (POF4-899) |0 G:(DE-HGF)POF4-899 |c POF4-899 |f POF IV |x 0 |
536 | _ | _ | |a DFG project G:(GEPRIS)390874280 - EXC 2155: RESIST - Resolving Infection Susceptibility (390874280) |0 G:(GEPRIS)390874280 |c 390874280 |x 1 |
536 | _ | _ | |a GRK 2771 - GRK 2771: Mensch und Mikrobe: Reorganisation von Zellkompartimenten und Molekülkomplexen während der Infektion (453548970) |0 G:(GEPRIS)453548970 |c 453548970 |x 2 |
536 | _ | _ | |a ICRAD - INTERNATIONAL COORDINATION OF RESEARCH ON INFECTIOUS ANIMAL DISEASES (862605) |0 G:(EU-Grant)862605 |c 862605 |f H2020-SFS-2019-1 |x 3 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de |
693 | _ | _ | |0 EXP:(DE-MLZ)NOSPEC-20140101 |5 EXP:(DE-MLZ)NOSPEC-20140101 |e No specific instrument |x 0 |
700 | 1 | _ | |a Dolata, Katarzyna Magdalena |0 0000-0001-7009-1778 |b 1 |e Corresponding author |
700 | 1 | _ | |a Pei, Gang |b 2 |
700 | 1 | _ | |a Molouki, Aidin |b 3 |
700 | 1 | _ | |a Goatley, Lynnette C. |b 4 |
700 | 1 | _ | |a Küchler, Richard |b 5 |
700 | 1 | _ | |a Soh, Timothy K. |0 P:(DE-H253)PIP1089262 |b 6 |
700 | 1 | _ | |a Bosse, Jens Bernhard |0 P:(DE-H253)PIP1082972 |b 7 |
700 | 1 | _ | |a Fablet, Aurore |b 8 |
700 | 1 | _ | |a Le Dimna, Mireille |b 9 |
700 | 1 | _ | |a Karadjian, Grégory |b 10 |
700 | 1 | _ | |a Hirchaud, Edouard |b 11 |
700 | 1 | _ | |a Netherton, Christopher L. |b 12 |
700 | 1 | _ | |a Dixon, Linda K. |0 0000-0003-3845-3016 |b 13 |
700 | 1 | _ | |a Reis, Ana Luisa |0 0000-0003-1332-7822 |b 14 |
700 | 1 | _ | |a Vitour, Damien |b 15 |
700 | 1 | _ | |a Le Potier, Marie-Frédérique |0 0000-0003-3929-9129 |b 16 |
700 | 1 | _ | |a Karger, Axel |0 0000-0002-0054-7394 |b 17 |
700 | 1 | _ | |a Caignard, Grégory |0 0000-0001-7021-0749 |b 18 |e Corresponding author |
773 | _ | _ | |a 10.1016/j.mcpro.2025.101038 |g p. 101038 - |0 PERI:(DE-600)2071375-7 |n 9 |p 101038 |t Molecular & cellular proteomics |v 24 |y 2025 |x 1535-9476 |
856 | 4 | _ | |y OpenAccess |u https://bib-pubdb1.desy.de/record/634624/files/PIIS1535947625001379.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://bib-pubdb1.desy.de/record/634624/files/PIIS1535947625001379.pdf?subformat=pdfa |
909 | C | O | |o oai:bib-pubdb1.desy.de:634624 |p openaire |p open_access |p driver |p VDB |p ec_fundedresources |p dnbdelivery |
910 | 1 | _ | |a Centre for Structural Systems Biology |0 I:(DE-H253)_CSSB-20140311 |k CSSB |b 6 |6 P:(DE-H253)PIP1089262 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 6 |6 P:(DE-H253)PIP1089262 |
910 | 1 | _ | |a Centre for Structural Systems Biology |0 I:(DE-H253)_CSSB-20140311 |k CSSB |b 7 |6 P:(DE-H253)PIP1082972 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 7 |6 P:(DE-H253)PIP1082972 |
913 | 1 | _ | |a DE-HGF |b Programmungebundene Forschung |l ohne Programm |1 G:(DE-HGF)POF4-890 |0 G:(DE-HGF)POF4-899 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-800 |4 G:(DE-HGF)POF |v ohne Topic |x 0 |
914 | 1 | _ | |y 2025 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2024-12-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2024-12-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2024-12-27 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b MOL CELL PROTEOMICS : 2022 |d 2024-12-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2023-04-12T14:49:13Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2023-04-12T14:49:13Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2024-12-27 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2024-12-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-27 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2024-12-27 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2023-04-12T14:49:13Z |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2024-12-27 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b MOL CELL PROTEOMICS : 2022 |d 2024-12-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-27 |
920 | 1 | _ | |0 I:(DE-H253)CSSB-MHH-JB-20210520 |k CSSB-MHH-JB |l CSSB-MHH-JB |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-H253)CSSB-MHH-JB-20210520 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|