000634412 001__ 634412
000634412 005__ 20250820215406.0
000634412 0247_ $$2doi$$a10.1039/D5AN00456J
000634412 0247_ $$2ISSN$$a0003-2654
000634412 0247_ $$2ISSN$$a1364-5528
000634412 0247_ $$2altmetric$$aaltmetric:179048838
000634412 0247_ $$2pmid$$apmid:40525753
000634412 0247_ $$2datacite_doi$$a10.3204/PUBDB-2025-02495
000634412 037__ $$aPUBDB-2025-02495
000634412 041__ $$aEnglish
000634412 082__ $$a540
000634412 1001_ $$0P:(DE-HGF)0$$aKerfoot, James$$b0$$eCorresponding author
000634412 245__ $$aBenchmarking TERS and TEPL probes: towards a reference sample for quantification of near-field enhancement factors in gap and non-gap modes
000634412 260__ $$aCambridge$$bSoc.$$c2025
000634412 3367_ $$2DRIVER$$aarticle
000634412 3367_ $$2DataCite$$aOutput Types/Journal article
000634412 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1755713201_76604
000634412 3367_ $$2BibTeX$$aARTICLE
000634412 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000634412 3367_ $$00$$2EndNote$$aJournal Article
000634412 500__ $$aJK, GAR and MWG acknowledge funding from the Engineeringand Physical Science Research Council (EPSRC) (Project: EP/V053884/1) and support from the Nanoscale and MicroscaleResearch Centre (nmRC). EJL and AJP would like to acknowl-edge the National Measurement System (NMS) of theDepartment for Science, Innovation and Technology (DSIT),UK ( projects #128826) for funding. The authors thankDongkuk Kim and Sebastian Wood at the National PhysicalLaboratory, U.K., for discussion associated with themanuscript.
000634412 520__ $$aBenchmarking the near-field signal enhancement attained using plasmonic metal-coated atomic force microscopy (AFM) probes for tip-enhanced Raman spectroscopy (TERS) and tip-enhanced photoluminescence (TEPL) measurements is challenging given the absence of a suitable reference sample that is simple to prepare, easy to use and compatible with different instrument configurations. To this end, in this study, we have fabricated a flake of monolayer tungsten diselenide (1L-WSe$_2$) stamped across the interface of gold and silver thin films on silicon dioxide and glass. We have demonstrated these samples to be effective for the facile determination of near-field Raman and photoluminescence contrast factors in both gap and non-gap mode, respectively. We show that the near-degenerate E$^1$$_{2g}$ + A$_{1g}$ and 2LA(M) peaks in the Raman spectra of WSe$_2$2 enable quantification of Raman contrast factors, with a ∼1.6-fold increase in TERS signal enhancement in gap mode, relative to non-gap mode, observed for a typical probe. Similar differences in the photoluminescence contrast factors were observed comparing in-contact and out-of-contact signal intensity ratios from gap and non-gap mode TEPL measurements. Moreover, in developing a reference methodology we found that the line shape of the TEPL profile was dependent upon the magnitude of the signal enhancement, with a disproportionate increase in the longer wavelength shoulder of the emission observed in gap mode. As this contribution to the asymmetric line shape is tentatively assigned to a dark exciton, which possesses an out-of-plane transition dipole moment, our TEPL measurements indicate that the directionality of the near-field enhancement provides a further handle enabling quantification of probe performance. Using samples prepared on glass, and comparing results obtained from two different instruments, each with a different excitation laser wavelength and optical access, we demonstrate the universal applicability of our reference material for sensitivity benchmarking of metallised AFM probes in both gap and non-gap mode, suitable for both reflection and transmission geometries, and across the range of laser wavelengths typically used for TERS and TEPL.
000634412 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
000634412 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000634412 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000634412 7001_ $$00000-0002-3432-4017$$aLegge, Elizabeth J.$$b1
000634412 7001_ $$aCollins, Amy$$b2
000634412 7001_ $$aChauhan, Jasbinder$$b3
000634412 7001_ $$0P:(DE-H253)PIP1007948$$aRossnagel, Kai$$b4
000634412 7001_ $$00000-0002-2120-8033$$aBeton, Peter H.$$b5
000634412 7001_ $$aMellor, Christopher J.$$b6
000634412 7001_ $$00000-0002-6841-2592$$aPollard, Andrew J.$$b7
000634412 7001_ $$0P:(DE-HGF)0$$aRance, Graham A.$$b8$$eCorresponding author
000634412 7001_ $$00000-0002-7844-1696$$aGeorge, Michael W.$$b9$$eCorresponding author
000634412 773__ $$0PERI:(DE-600)1472713-4$$a10.1039/D5AN00456J$$gVol. 150, no. 14, p. 3077 - 3088$$n14$$p3077 - 3088$$tThe analyst$$v150$$x0003-2654$$y2025
000634412 8564_ $$uhttps://bib-pubdb1.desy.de/record/634412/files/Benchmarking%20TERS.pdf$$yOpenAccess
000634412 8564_ $$uhttps://bib-pubdb1.desy.de/record/634412/files/Benchmarking%20TERS.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000634412 909CO $$ooai:bib-pubdb1.desy.de:634412$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
000634412 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1007948$$aDeutsches Elektronen-Synchrotron$$b4$$kDESY
000634412 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x0
000634412 9141_ $$y2025
000634412 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-31
000634412 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-31
000634412 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-31
000634412 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bANALYST : 2022$$d2024-12-31
000634412 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-31
000634412 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-31
000634412 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-31
000634412 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-31
000634412 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000634412 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-31
000634412 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-31
000634412 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2024-12-31$$wger
000634412 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-31
000634412 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-31
000634412 9201_ $$0I:(DE-H253)FS-SXQM-20190201$$kFS-SXQM$$lFS-SXQM$$x0
000634412 980__ $$ajournal
000634412 980__ $$aVDB
000634412 980__ $$aUNRESTRICTED
000634412 980__ $$aI:(DE-H253)FS-SXQM-20190201
000634412 9801_ $$aFullTexts