001     633344
005     20250908213827.0
024 7 _ |a 10.1088/2515-7655/addd46
|2 doi
024 7 _ |a 10.3204/PUBDB-2025-02391
|2 datacite_doi
037 _ _ |a PUBDB-2025-02391
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Lyonnard, Sandrine
|0 P:(DE-H253)PIP1120104
|b 0
|e Corresponding author
245 _ _ |a Building a community lightsource meta-infrastructure to accelerate battery innovation in Europe
260 _ _ |a Bristol
|c 2025
|b IOP Publishing
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1757317398_3856825
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Breakthroughs in battery research are imperative to provide society with batteries that are safe and sustainable, have a high energy density, and have a long cycle life at low cost. Recent advances in research methodologies, the emergence of new market opportunities, and strategic funding schemes have allowed not only large, but also small companies, universities, and public research organizations to play an increasingly significant role in the advancement of battery technology. Challenges in battery technology development are multifaceted; therefore, a collaborative approach is crucial to bring together various stakeholders and ensure access to the full range of technical and scientific expertise. To grasp the core properties of electrode materials, electrolytes, and interfaces and to identify the mechanisms of battery degradation and failure, a multidisciplinary analytical approach is crucial. This strategy relies on the unique and complementary potential of advanced characterization techniques available at synchrotron and x-ray free electron laser facilities. Science-to-industry interactions are expected to increase the development of new standardized setups to approach realistic operando conditions. Therefore, rapid access to instruments, including high-throughput ex-situ, in-situ and operando capabilities, is key to accelerating the development of safe and sustainable batteries. The purpose of this paper is to discuss how the characterization needs of the battery community can be met by establishing a collaboration network based on a meta-infrastructure model, where the emphasis will be on collaboration and the sharing of experience and data. The proposed methodology considers the urgency in the battery community and the necessary technical developments to reach the scope of collaboration and focuses in particular on the needs for standardization, big data challenges, and open data approaches.
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|f POF IV
|x 0
536 _ _ |a LEAPS-INNOV - LEAPS pilot to foster open innovation for accelerator-based light sources in Europe (101004728)
|0 G:(EU-Grant)101004728
|c 101004728
|f H2020-INFRAINNOV-2020-2
|x 1
536 _ _ |a BIG-MAP - Battery Interface Genome - Materials Acceleration Platform (957189)
|0 G:(EU-Grant)957189
|c 957189
|f H2020-LC-BAT-2020-3
|x 2
536 _ _ |a BATTERY 2030PLUS - BATTERY 2030+ large-scale research initiative: At the heart of a connected green society (957213)
|0 G:(EU-Grant)957213
|c 957213
|f H2020-LC-BAT-2020-3
|x 3
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |0 EXP:(DE-MLZ)NOSPEC-20140101
|5 EXP:(DE-MLZ)NOSPEC-20140101
|e No specific instrument
|x 0
700 1 _ |a Biscari, Caterina
|b 1
700 1 _ |a Bozzini, Benedetto
|0 0000-0002-2725-9157
|b 2
700 1 _ |a Casas-Cabanas, Montse
|b 3
700 1 _ |a Machado Calisto, Barbara
|b 4
700 1 _ |a Fransson, Matilda
|b 5
700 1 _ |a Graceffa, Rita
|b 6
700 1 _ |a Hennies, Franz
|b 7
700 1 _ |a Hinrichsen, Bernd
|b 8
700 1 _ |a Karlsson, Martin
|b 9
700 1 _ |a Kataev, Elmar
|b 10
700 1 _ |a Kiskinova, Maya
|b 11
700 1 _ |a Marino, Cyril
|b 12
700 1 _ |a Mirolo, Marta
|b 13
700 1 _ |a Orbanic, Doriana
|b 14
700 1 _ |a Reynaud, Marine
|b 15
700 1 _ |a Shearing, Paul
|b 16
700 1 _ |a Simonelli, Laura
|b 17
700 1 _ |a Stievano, Lorenzo
|0 0000-0001-8548-0231
|b 18
700 1 _ |a Stuckelberger, Michael E
|0 P:(DE-H253)PIP1081708
|b 19
700 1 _ |a Drnec, Jakub
|0 P:(DE-H253)PIP1085939
|b 20
|e Corresponding author
773 _ _ |a 10.1088/2515-7655/addd46
|g Vol. 7, no. 3, p. 031001 -
|0 PERI:(DE-600)2950951-8
|n 3
|p 031001
|t JPhys energy
|v 7
|y 2025
|x 2515-7655
856 4 _ |u https://bib-pubdb1.desy.de/record/633344/files/HTML-Approval_of_scientific_publication.html
856 4 _ |u https://bib-pubdb1.desy.de/record/633344/files/PDF-Approval_of_scientific_publication.pdf
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/633344/files/lyonnard-2025-jphyse%20Lightsource%20meta-infrastructure%20to%20accelerate%20battery%20innovation.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/633344/files/lyonnard-2025-jphyse%20Lightsource%20meta-infrastructure%20to%20accelerate%20battery%20innovation.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:633344
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1120104
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 19
|6 P:(DE-H253)PIP1081708
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 19
|6 P:(DE-H253)PIP1081708
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 20
|6 P:(DE-H253)PIP1085939
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-20
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J PHYS-ENERGY : 2022
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-08-08T17:02:37Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-08-08T17:02:37Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-20
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-20
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-08-08T17:02:37Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-20
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J PHYS-ENERGY : 2022
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-20
920 1 _ |0 I:(DE-H253)FS-PETRA-20140814
|k FS-PETRA
|l FS-PETRA
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)FS-PETRA-20140814
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21