001     633262
005     20250831054618.0
024 7 _ |a 10.1021/acsaem.5c01367
|2 doi
024 7 _ |a 10.3204/PUBDB-2025-02388
|2 datacite_doi
024 7 _ |a altmetric:179384866
|2 altmetric
037 _ _ |a PUBDB-2025-02388
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a An, Siyu
|0 P:(DE-H253)PIP1107283
|b 0
245 _ _ |a Titanium Substitution to Advance the Prospect of NaMnO$_2$ Cathodes for Practical Application in Sodium-Ion Batteries
260 _ _ |a Washington, DC
|c 2025
|b ACS Publications
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1756106364_2536571
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a O3-type layered oxides stand out among various Na-ion battery cathodes due to their unparalleled theoretical specific capacities. As a representative of low-cost, Mn-based cathode materials, $α$-NaMnO$_2$ (NMO) has attracted great attention. However, its practical application is hindered by poor reversibility. Compared to other O3 or O′3-type layered oxides, such as NaNiO2, NMO undergoes multiple phase transitions, with the final O1 phase negatively affecting cycling performance. In this study, precipitated Mn$_3$O$_4$ was employed, to our knowledge for the first time, as a precursor in the synthesis of NMO, and the cathode material was systematically optimized through incremental improvement via titanium substitution. NaMn$_{0.9}$Ti$_{0.1}$O$_2$ was found to exhibit enhanced stability, with the capacity retention increasing from 42 to 70% after 50 cycles at C/10, along with superior rate capability over NMO. This is due in part to titanium’s role in facilitating primary particle (grain) growth and suppressing O1 phase formation, thereby preserving structural integrity and mitigating degradation caused by volume variations and irreversible oxygen redox during battery operation. This work not only provides valuable insights into the development of next-generation NMO cathodes but also advances their potential for practical applications.
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 0
536 _ _ |a FS-Proposal: I-20230867 (I-20230867)
|0 G:(DE-H253)I-20230867
|c I-20230867
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P02.1
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P02.1-20150101
|6 EXP:(DE-H253)P-P02.1-20150101
|x 0
700 1 _ |a Sahu, Rajib
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Zhang, Ruizhuo
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Ulusoy, Fatih
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Kübel, Christian
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Kondrakov, Aleksandr
|0 P:(DE-H253)PIP1025977
|b 5
|e Corresponding author
700 1 _ |a Janek, Juergen
|0 P:(DE-H253)PIP1023994
|b 6
700 1 _ |a Brezesinski, Torsten
|0 P:(DE-H253)PIP1007361
|b 7
|e Corresponding author
773 _ _ |a 10.1021/acsaem.5c01367
|g p. acsaem.5c01367
|0 PERI:(DE-600)2916551-9
|n 14
|p 10508 - 10518
|t ACS applied energy materials
|v 8
|y 2025
|x 2574-0962
856 4 _ |y Published on 2025-07-11. Available in OpenAccess from 2026-07-11.
|u https://bib-pubdb1.desy.de/record/633262/files/NMTO_MS_Revised.pdf
856 4 _ |y Published on 2025-07-11. Available in OpenAccess from 2026-07-11.
|x pdfa
|u https://bib-pubdb1.desy.de/record/633262/files/NMTO_MS_Revised.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:633262
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1107283
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-H253)PIP1025977
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 P:(DE-H253)PIP1023994
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 7
|6 P:(DE-H253)PIP1007361
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-11
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS APPL ENERG MATER : 2022
|d 2024-12-11
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ACS APPL ENERG MATER : 2022
|d 2024-12-11
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-11
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21