000633262 001__ 633262
000633262 005__ 20250831054618.0
000633262 0247_ $$2doi$$a10.1021/acsaem.5c01367
000633262 0247_ $$2datacite_doi$$a10.3204/PUBDB-2025-02388
000633262 0247_ $$2altmetric$$aaltmetric:179384866
000633262 037__ $$aPUBDB-2025-02388
000633262 041__ $$aEnglish
000633262 082__ $$a540
000633262 1001_ $$0P:(DE-H253)PIP1107283$$aAn, Siyu$$b0
000633262 245__ $$aTitanium Substitution to Advance the Prospect of NaMnO$_2$ Cathodes for Practical Application in Sodium-Ion Batteries
000633262 260__ $$aWashington, DC$$bACS Publications$$c2025
000633262 3367_ $$2DRIVER$$aarticle
000633262 3367_ $$2DataCite$$aOutput Types/Journal article
000633262 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1756106364_2536571
000633262 3367_ $$2BibTeX$$aARTICLE
000633262 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000633262 3367_ $$00$$2EndNote$$aJournal Article
000633262 520__ $$aO3-type layered oxides stand out among various Na-ion battery cathodes due to their unparalleled theoretical specific capacities. As a representative of low-cost, Mn-based cathode materials, $α$-NaMnO$_2$ (NMO) has attracted great attention. However, its practical application is hindered by poor reversibility. Compared to other O3 or O′3-type layered oxides, such as NaNiO2, NMO undergoes multiple phase transitions, with the final O1 phase negatively affecting cycling performance. In this study, precipitated Mn$_3$O$_4$ was employed, to our knowledge for the first time, as a precursor in the synthesis of NMO, and the cathode material was systematically optimized through incremental improvement via titanium substitution. NaMn$_{0.9}$Ti$_{0.1}$O$_2$ was found to exhibit enhanced stability, with the capacity retention increasing from 42 to 70% after 50 cycles at C/10, along with superior rate capability over NMO. This is due in part to titanium’s role in facilitating primary particle (grain) growth and suppressing O1 phase formation, thereby preserving structural integrity and mitigating degradation caused by volume variations and irreversible oxygen redox during battery operation. This work not only provides valuable insights into the development of next-generation NMO cathodes but also advances their potential for practical applications. 
000633262 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x0
000633262 536__ $$0G:(DE-H253)I-20230867$$aFS-Proposal: I-20230867 (I-20230867)$$cI-20230867$$x1
000633262 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000633262 693__ $$0EXP:(DE-H253)P-P02.1-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P02.1-20150101$$aPETRA III$$fPETRA Beamline P02.1$$x0
000633262 7001_ $$0P:(DE-HGF)0$$aSahu, Rajib$$b1
000633262 7001_ $$0P:(DE-HGF)0$$aZhang, Ruizhuo$$b2
000633262 7001_ $$0P:(DE-HGF)0$$aUlusoy, Fatih$$b3
000633262 7001_ $$0P:(DE-HGF)0$$aKübel, Christian$$b4
000633262 7001_ $$0P:(DE-H253)PIP1025977$$aKondrakov, Aleksandr$$b5$$eCorresponding author
000633262 7001_ $$0P:(DE-H253)PIP1023994$$aJanek, Juergen$$b6
000633262 7001_ $$0P:(DE-H253)PIP1007361$$aBrezesinski, Torsten$$b7$$eCorresponding author
000633262 773__ $$0PERI:(DE-600)2916551-9$$a10.1021/acsaem.5c01367$$gp. acsaem.5c01367$$n14$$p10508 - 10518$$tACS applied energy materials$$v8$$x2574-0962$$y2025
000633262 8564_ $$uhttps://bib-pubdb1.desy.de/record/633262/files/NMTO_MS_Revised.pdf$$yPublished on 2025-07-11. Available in OpenAccess from 2026-07-11.
000633262 8564_ $$uhttps://bib-pubdb1.desy.de/record/633262/files/NMTO_MS_Revised.pdf?subformat=pdfa$$xpdfa$$yPublished on 2025-07-11. Available in OpenAccess from 2026-07-11.
000633262 909CO $$ooai:bib-pubdb1.desy.de:633262$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000633262 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1107283$$aExternal Institute$$b0$$kExtern
000633262 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b1$$kExtern
000633262 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b2$$kExtern
000633262 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b3$$kExtern
000633262 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b4$$kExtern
000633262 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1025977$$aExternal Institute$$b5$$kExtern
000633262 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1023994$$aExternal Institute$$b6$$kExtern
000633262 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1007361$$aExternal Institute$$b7$$kExtern
000633262 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x0
000633262 9141_ $$y2025
000633262 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-11
000633262 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-11
000633262 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-11
000633262 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000633262 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS APPL ENERG MATER : 2022$$d2024-12-11
000633262 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACS APPL ENERG MATER : 2022$$d2024-12-11
000633262 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-11
000633262 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-11
000633262 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-11
000633262 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-11
000633262 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-11
000633262 9201_ $$0I:(DE-H253)HAS-User-20120731$$kDOOR ; HAS-User$$lDOOR-User$$x0
000633262 980__ $$ajournal
000633262 980__ $$aVDB
000633262 980__ $$aUNRESTRICTED
000633262 980__ $$aI:(DE-H253)HAS-User-20120731
000633262 9801_ $$aFullTexts