001     633260
005     20250824054430.0
024 7 _ |a 10.1016/j.cej.2025.160939
|2 doi
024 7 _ |a 1385-8947
|2 ISSN
024 7 _ |a 0923-0467
|2 ISSN
024 7 _ |a 1873-3212
|2 ISSN
024 7 _ |a 1873-3220
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2025-02386
|2 datacite_doi
024 7 _ |a altmetric:175079379
|2 altmetric
037 _ _ |a PUBDB-2025-02386
041 _ _ |a English
100 1 _ |a An, Siyu
|0 P:(DE-H253)PIP1107283
|b 0
245 _ _ |a Exploring calcium pillaring of O3-type NaNi$_{0.9}$Ti$_{0.1}$O$_2$ cathodes to advance Na-ion battery technology
260 _ _ |a Amsterdam
|c 2025
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1755865791_1067098
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a ISSN 1385-8947 not unique: **2 hits**.
520 _ _ |a NaNi$_{0.9}$Ti$_{0.1}$O$_2$ (NNTO), a promising sodium-ion cathode material, is capable of delivering high specific capacities but is compromised by structural degradation at high potentials and poor redox stability. Herein, we introduced varying amounts of Ca$^{2+}$ as pillaring ions into the intercalation sites of NNTO to examine their effect on structure and electrochemical performance. Laboratory X-ray diffraction and charge/discharge testing identified Na$_{0.95}$Ca$_{0.025}$Ni$_{0.9}$Ti$_{0.1}$O$_2$ (CaNNTO) as the optimal composition in terms of interlayer spacing, rate capability, and cycling stability. Specifically, the capacity retention after 200 cycles improved from 27 to 48 %. To elucidate the role of Ca$^{2+}$, synchrotron X-ray diffraction was performed, revealing that CaNNTO undergoes only about 3 % volume change in the initial cycle, compared to about 30 % for NNTO. This reduced volume variation was confirmed by cross-sectional electron microscopy and acoustic emission measurements. Hard and soft X-ray absorption spectroscopy further indicated a more reversible nickel redox (Ni$^{2+}$/Ni$^{3+}$/Ni$^{4+}$) in CaNNTO, and differential electrochemical mass spectrometry demonstrated that Ca$^{2+}$ incorporation helps suppress oxygen loss from the lattice, thereby directly stabilizing the cathode|electrolyte interface. Overall, calcium pillaring is found to effectively mitigate structural collapse and redox instabilities, making CaNNTO a more viable candidate for practical sodium-ion battery applications.
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|f POF IV
|x 0
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 1
536 _ _ |a FS-Proposal: I-20230867 (I-20230867)
|0 G:(DE-H253)I-20230867
|c I-20230867
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P02.1
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P02.1-20150101
|6 EXP:(DE-H253)P-P02.1-20150101
|x 0
700 1 _ |a Karger, Leonhard
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Müller, Philipp
|0 P:(DE-H253)PIP1098827
|b 2
700 1 _ |a Lin, Jing
|0 P:(DE-H253)PIP1096719
|b 3
700 1 _ |a Vasala, Sami
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Baran, Volodymyr
|0 P:(DE-H253)PIP1031172
|b 5
700 1 _ |a Dreyer, Sören L.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Zhang, Ruizhuo
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Ulusoy, Fatih
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Kondrakov, Aleksandr
|0 P:(DE-H253)PIP1025977
|b 9
|e Corresponding author
700 1 _ |a Janek, Juergen
|0 P:(DE-H253)PIP1023994
|b 10
|e Corresponding author
700 1 _ |a Brezesinski, Torsten
|0 P:(DE-H253)PIP1007361
|b 11
|e Corresponding author
773 _ _ |a 10.1016/j.cej.2025.160939
|g Vol. 509, p. 160939 -
|0 PERI:(DE-600)2012137-4
|p 160939
|t The chemical engineering journal
|v 509
|y 2025
|x 1385-8947
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/633260/files/Exploring%20Calcium%20Pillaring.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/633260/files/Exploring%20Calcium%20Pillaring.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:633260
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1107283
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-H253)PIP1098827
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-H253)PIP1096719
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 5
|6 P:(DE-H253)PIP1031172
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-H253)PIP1031172
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 7
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 8
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 9
|6 P:(DE-H253)PIP1025977
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 10
|6 P:(DE-H253)PIP1023994
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 11
|6 P:(DE-H253)PIP1007361
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 1
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-23
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b CHEM ENG J : 2022
|d 2023-08-23
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CHEM ENG J : 2022
|d 2023-08-23
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-23
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-23
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-08-23
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-23
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 0
920 1 _ |0 I:(DE-H253)FS-PET-D-20190712
|k FS-PET-D
|l Experimentebetreuung PETRA III
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 _ _ |a I:(DE-H253)FS-PET-D-20190712
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21