001     633158
005     20250824054418.0
024 7 _ |a 10.1021/acsnano.5c07289
|2 doi
024 7 _ |a 1936-0851
|2 ISSN
024 7 _ |a 1936-086X
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2025-02354
|2 datacite_doi
024 7 _ |a altmetric:179284455
|2 altmetric
024 7 _ |a pmid:40634268
|2 pmid
037 _ _ |a PUBDB-2025-02354
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Hiller, Jonas L.
|b 0
245 _ _ |a Mechanically Robust Supercrystals from Antisolvent-Induced Assembly of Perovskite Nanocrystals
260 _ _ |a Washington, DC
|c 2025
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1755599701_4431
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Ordered arrays of nanocrystals, called supercrystals, have attracted significant attention owing to the collective quantum effects arising from the coupling between neighboring nanocrystals. In particular, lead halide perovskite nanocrystals are widely used because of the combination of the optical properties and faceted cubic shape, which enables the formation of highly ordered supercrystals. The most frequently used method for the fabrication of perovskite supercrystals is based on the self-assembly of nanocrystals from solution via slow evaporation of the solvent. However, the supercrystals produced with this technique grow in random positions on the substrate. Moreover, they are mechanically soft due to the presence of organic ligands around the individual nanocrystals. Therefore, such supercrystals cannot be easily manipulated with microgrippers, which hinders their use in applications. In this work, we synthesize mechanically robust supercrystals built from cubic lead halide perovskite nanocrystals by a two-layer phase diffusion self-assembly with acetonitrile as the antisolvent. This method yields highly faceted thick supercrystals, which are robust enough to be picked up and relocated by microgrippers. We employed X-ray nanodiffraction together with high-resolution scanning electron microscopy and atomic force microscopy to reveal the structure of CsPbBr3, CsPbBr2Cl, and CsPbCl3 supercrystals assembled using the two-layer phase diffusion technique and explain their unusual mechanical robustness. Our findings are crucial for further experiments and applications in which supercrystals need to be placed in a precise location, for example, between the electrodes in an electro-optical modulator.
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|f POF IV
|x 0
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 1
536 _ _ |a FS-Proposal: I-20230782 (I-20230782)
|0 G:(DE-H253)I-20230782
|c I-20230782
|x 2
536 _ _ |a DFG project G:(GEPRIS)546072194 - Erhöhung von struktureller Kohärenz und optischem Koppeln in Superkristallen aus Nanopartikeln (546072194)
|0 G:(GEPRIS)546072194
|c 546072194
|x 3
536 _ _ |a DFG project G:(GEPRIS)426008387 - Optoelektronik Synthetischer Mesokristalle (426008387)
|0 G:(GEPRIS)426008387
|c 426008387
|x 4
536 _ _ |a PROMETHEUS - Engineering of Superfluorescent Nanocrystal Solids (101039683)
|0 G:(EU-Grant)101039683
|c 101039683
|f ERC-2021-STG
|x 5
536 _ _ |a 05K22MG1 - Methodische Entwicklung eines neuen Phasenkontrast-Tomographie Verfahrens mit holographischer Bildrekonstruktion (Holo-Tomographie). (BMBF-05K22MG1)
|0 G:(DE-Ds200)BMBF-05K22MG1
|c BMBF-05K22MG1
|f 05K22MG1
|x 6
693 _ _ |a PETRA III
|f PETRA Beamline P10
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P10-20150101
|6 EXP:(DE-H253)P-P10-20150101
|x 0
700 1 _ |a Thalwitzer, Robert
|0 P:(DE-H253)PIP1106362
|b 1
700 1 _ |a Bozkurt, Ata
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Ferreira, Matheus Gomes
|0 0000-0002-1446-1671
|b 3
700 1 _ |a Hodak, Richard
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Strauß, Fabian
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Nadler, Elke
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Hinsley, Gerard
|0 P:(DE-H253)PIP1102078
|b 7
700 1 _ |a Wang, Bihan
|0 P:(DE-H253)PIP1081817
|b 8
700 1 _ |a Ngoi, Kuan Hoon
|0 P:(DE-H253)PIP1102996
|b 9
700 1 _ |a Rudzinski, Witold
|0 P:(DE-H253)PIP1111431
|b 10
700 1 _ |a Kneschaurek, Ekaterina
|0 P:(DE-H253)PIP1088034
|b 11
700 1 _ |a Roseker, Wojciech
|0 P:(DE-H253)PIP1004234
|b 12
700 1 _ |a Sprung, Michael
|0 P:(DE-H253)PIP1007141
|b 13
700 1 _ |a Lapkin, Dmitrii
|0 P:(DE-H253)PIP1081202
|b 14
700 1 _ |a Baranov, Dmitry
|0 P:(DE-H253)PIP1112071
|b 15
700 1 _ |a Schreiber, Frank
|0 P:(DE-H253)PIP1008437
|b 16
700 1 _ |a Vartanyants, Ivan A.
|0 P:(DE-H253)PIP1003481
|b 17
700 1 _ |a Scheele, Marcus
|0 P:(DE-H253)PIP1023788
|b 18
|e Corresponding author
700 1 _ |a Zaluzhnyy, Ivan A.
|0 P:(DE-H253)PIP1014884
|b 19
|e Corresponding author
773 _ _ |a 10.1021/acsnano.5c07289
|0 PERI:(DE-600)2383064-5
|n 28
|p 26117
|t ACS nano
|v 19
|y 2025
|x 1936-0851
856 4 _ |u https://pubs.acs.org/doi/10.1021/acsnano.5c07289
856 4 _ |u https://bib-pubdb1.desy.de/record/633158/files/HTML-Approval_of_scientific_publication.html
856 4 _ |u https://bib-pubdb1.desy.de/record/633158/files/Internal%20Review%20.pdf
856 4 _ |u https://bib-pubdb1.desy.de/record/633158/files/PDF-Approval_of_scientific_publication.pdf
856 4 _ |u https://bib-pubdb1.desy.de/record/633158/files/Internal%20Review%20.pdf?subformat=pdfa
|x pdfa
856 4 _ |u https://bib-pubdb1.desy.de/record/633158/files/hiller-et-al-2025-mechanically-robust-supercrystals-from-antisolvent-induced-assembly-of-perovskite-nanocrystals.pdf
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/633158/files/hiller-et-al-2025-mechanically-robust-supercrystals-from-antisolvent-induced-assembly-of-perovskite-nanocrystals.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:bib-pubdb1.desy.de:633158
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-H253)PIP1106362
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 7
|6 P:(DE-H253)PIP1102078
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 7
|6 P:(DE-H253)PIP1102078
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 8
|6 P:(DE-H253)PIP1081817
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 8
|6 P:(DE-H253)PIP1081817
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 9
|6 P:(DE-H253)PIP1102996
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 10
|6 P:(DE-H253)PIP1111431
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 10
|6 P:(DE-H253)PIP1111431
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 11
|6 P:(DE-H253)PIP1088034
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 12
|6 P:(DE-H253)PIP1004234
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 12
|6 P:(DE-H253)PIP1004234
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 13
|6 P:(DE-H253)PIP1007141
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 13
|6 P:(DE-H253)PIP1007141
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 14
|6 P:(DE-H253)PIP1081202
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 14
|6 P:(DE-H253)PIP1081202
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 14
|6 P:(DE-H253)PIP1081202
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 15
|6 P:(DE-H253)PIP1112071
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 16
|6 P:(DE-H253)PIP1008437
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 17
|6 P:(DE-H253)PIP1003481
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 17
|6 P:(DE-H253)PIP1003481
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 17
|6 P:(DE-H253)PIP1003481
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 18
|6 P:(DE-H253)PIP1023788
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 19
|6 P:(DE-H253)PIP1014884
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 1
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-07
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b ACS NANO : 2022
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2025-01-07
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-07
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS NANO : 2022
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-07
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 0
920 1 _ |0 I:(DE-H253)FS-PETRA-S-20210408
|k FS-PETRA-S
|l PETRA-S
|x 1
920 1 _ |0 I:(DE-H253)FS-PS-20131107
|k FS-PS
|l FS-Photon Science
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 _ _ |a I:(DE-H253)FS-PETRA-S-20210408
980 _ _ |a I:(DE-H253)FS-PS-20131107
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21