001     633154
005     20250715151540.0
024 7 _ |a 10.1080/17452759.2025.2526798
|2 doi
024 7 _ |a 1745-2759
|2 ISSN
024 7 _ |a 1745-2767
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2025-02350
|2 datacite_doi
024 7 _ |2 openalex
|a openalex:W4412165936
037 _ _ |a PUBDB-2025-02350
041 _ _ |a English
082 _ _ |a 380
100 1 _ |a Oezsoy, Andac
|0 P:(DE-H253)PIP1105330
|b 0
245 _ _ |a Deconvoluting cracking mechanisms in fusion processing of steel-copper multi-materials via Operando X-ray characterisation
260 _ _ |a London [u.a.]
|c 2025
|b Taylor and Francis
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1752237153_3480388
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a This study investigates various cracking mechanisms and their prevalence in fusion processing of steel-copper multi-materials using operando X-ray diffraction and imaging during laser powder-bed fusion (LPBF) of 316L-CuCrZr multi-material. During this investigation, three main types of cracking were identified: (i) solidification cracking, (ii) metal-induced embrittlement (MIE), and (iii) liquation cracking. All cracking types are closely related to phase formation during processing and stem from two underlying mechanisms. First, liquid–liquid phase separation (LLPS) and the monotectic reaction in the 316L-CuCrZr system cause two liquids with vastly different solidification ranges to form, leading to solidification cracking. Second, LLPS and the monotectic reaction uniformly distribute Cu-rich liquid between the Fe-rich dendrites, leading to MIE and/or liquation cracking. Conducted based on the insights gained from the operando characterisation, further experiments showed that cracking can be drastically reduced by avoiding phase separation. However, the complete elimination of cracking necessitates chemical alterations in the material feedstock, indicating that while process adjustments can mitigate cracking, they may fail to fully prevent it. These findings serve as a guideline for understanding the underlying causes of cracking in steel-copper multi-materials, how process optimisation can effectively mitigate cracking, and to what extent such adjustments in processing can achieve this outcome.
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|f POF IV
|x 0
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 1
536 _ _ |a FS-Proposal: I-20240114 EC (I-20240114-EC)
|0 G:(DE-H253)I-20240114-EC
|c I-20240114-EC
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P21.2
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P21.2-20150101
|6 EXP:(DE-H253)P-P21.2-20150101
|x 0
700 1 _ |a Hearn, William
|0 P:(DE-H253)PIP1107547
|b 1
700 1 _ |a Gaudez, Steve
|0 P:(DE-H253)PIP1083530
|b 2
700 1 _ |a Jeswani, Rijuta
|0 P:(DE-H253)PIP1111874
|b 3
700 1 _ |a Chen, Yunhui
|0 0000-0002-1684-2507
|b 4
700 1 _ |a Rack, Alexander
|0 P:(DE-H253)PIP1016294
|b 5
700 1 _ |a Hegedüs, Zoltan
|0 P:(DE-H253)PIP1083297
|b 6
700 1 _ |a Casati, Nicola
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Logé, Roland E.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Van Petegem, Steven
|0 P:(DE-H253)PIP1020213
|b 9
|e Corresponding author
773 _ _ |a 10.1080/17452759.2025.2526798
|g Vol. 20, no. 1, p. e2526798
|0 PERI:(DE-600)2207787-X
|n 1
|p e2526798
|t Virtual and physical prototyping
|v 20
|y 2025
|x 1745-2759
856 4 _ |u https://www.tandfonline.com/doi/full/10.1080/17452759.2025.2526798
856 4 _ |u https://bib-pubdb1.desy.de/record/633154/files/2025ozsoy_deconvoluting-cracking-mechanisms.pdf
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/633154/files/2025ozsoy_deconvoluting-cracking-mechanisms.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:bib-pubdb1.desy.de:633154
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a PSI
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-H253)PIP1105330
910 1 _ |a PSI
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-H253)PIP1107547
910 1 _ |a PSI
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-H253)PIP1083530
910 1 _ |a PSI
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-H253)PIP1111874
910 1 _ |a RMIT
|0 I:(DE-HGF)0
|b 4
|6 0000-0002-1684-2507
910 1 _ |a ESRF
|0 I:(DE-HGF)0
|b 5
|6 P:(DE-H253)PIP1016294
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 6
|6 P:(DE-H253)PIP1083297
910 1 _ |a PSI
|0 I:(DE-HGF)0
|b 7
|6 P:(DE-HGF)0
910 1 _ |a EPFL
|0 I:(DE-HGF)0
|b 8
|6 P:(DE-HGF)0
910 1 _ |a PSI
|0 I:(DE-HGF)0
|b 9
|6 P:(DE-H253)PIP1020213
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 1
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-13
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-13
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b VIRTUAL PHYS PROTOTY : 2022
|d 2024-12-13
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b VIRTUAL PHYS PROTOTY : 2022
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-07-24T12:21:10Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-07-24T12:21:10Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-13
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-13
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-13
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-13
920 1 _ |0 I:(DE-H253)PETRA_III-20150811
|k PETRA III
|l PETRA III
|x 0
920 1 _ |0 I:(DE-H253)FS-PET-D-20190712
|k FS-PET-D
|l Experimentebetreuung PETRA III
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)PETRA_III-20150811
980 _ _ |a I:(DE-H253)FS-PET-D-20190712
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21