000633154 001__ 633154
000633154 005__ 20250715151540.0
000633154 0247_ $$2doi$$a10.1080/17452759.2025.2526798
000633154 0247_ $$2ISSN$$a1745-2759
000633154 0247_ $$2ISSN$$a1745-2767
000633154 0247_ $$2datacite_doi$$a10.3204/PUBDB-2025-02350
000633154 0247_ $$2openalex$$aopenalex:W4412165936
000633154 037__ $$aPUBDB-2025-02350
000633154 041__ $$aEnglish
000633154 082__ $$a380
000633154 1001_ $$0P:(DE-H253)PIP1105330$$aOezsoy, Andac$$b0
000633154 245__ $$aDeconvoluting cracking mechanisms in fusion processing of steel-copper multi-materials via Operando X-ray characterisation
000633154 260__ $$aLondon [u.a.]$$bTaylor and Francis$$c2025
000633154 3367_ $$2DRIVER$$aarticle
000633154 3367_ $$2DataCite$$aOutput Types/Journal article
000633154 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1752237153_3480388
000633154 3367_ $$2BibTeX$$aARTICLE
000633154 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000633154 3367_ $$00$$2EndNote$$aJournal Article
000633154 520__ $$aThis study investigates various cracking mechanisms and their prevalence in fusion processing of steel-copper multi-materials using operando X-ray diffraction and imaging during laser powder-bed fusion (LPBF) of 316L-CuCrZr multi-material. During this investigation, three main types of cracking were identified: (i) solidification cracking, (ii) metal-induced embrittlement (MIE), and (iii) liquation cracking. All cracking types are closely related to phase formation during processing and stem from two underlying mechanisms. First, liquid–liquid phase separation (LLPS) and the monotectic reaction in the 316L-CuCrZr system cause two liquids with vastly different solidification ranges to form, leading to solidification cracking. Second, LLPS and the monotectic reaction uniformly distribute Cu-rich liquid between the Fe-rich dendrites, leading to MIE and/or liquation cracking. Conducted based on the insights gained from the operando characterisation, further experiments showed that cracking can be drastically reduced by avoiding phase separation. However, the complete elimination of cracking necessitates chemical alterations in the material feedstock, indicating that while process adjustments can mitigate cracking, they may fail to fully prevent it. These findings serve as a guideline for understanding the underlying causes of cracking in steel-copper multi-materials, how process optimisation can effectively mitigate cracking, and to what extent such adjustments in processing can achieve this outcome.
000633154 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
000633154 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x1
000633154 536__ $$0G:(DE-H253)I-20240114-EC$$aFS-Proposal: I-20240114 EC (I-20240114-EC)$$cI-20240114-EC$$x2
000633154 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000633154 693__ $$0EXP:(DE-H253)P-P21.2-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P21.2-20150101$$aPETRA III$$fPETRA Beamline P21.2$$x0
000633154 7001_ $$0P:(DE-H253)PIP1107547$$aHearn, William$$b1
000633154 7001_ $$0P:(DE-H253)PIP1083530$$aGaudez, Steve$$b2
000633154 7001_ $$0P:(DE-H253)PIP1111874$$aJeswani, Rijuta$$b3
000633154 7001_ $$00000-0002-1684-2507$$aChen, Yunhui$$b4
000633154 7001_ $$0P:(DE-H253)PIP1016294$$aRack, Alexander$$b5
000633154 7001_ $$0P:(DE-H253)PIP1083297$$aHegedüs, Zoltan$$b6
000633154 7001_ $$0P:(DE-HGF)0$$aCasati, Nicola$$b7
000633154 7001_ $$0P:(DE-HGF)0$$aLogé, Roland E.$$b8
000633154 7001_ $$0P:(DE-H253)PIP1020213$$aVan Petegem, Steven$$b9$$eCorresponding author
000633154 773__ $$0PERI:(DE-600)2207787-X$$a10.1080/17452759.2025.2526798$$gVol. 20, no. 1, p. e2526798$$n1$$pe2526798$$tVirtual and physical prototyping$$v20$$x1745-2759$$y2025
000633154 8564_ $$uhttps://www.tandfonline.com/doi/full/10.1080/17452759.2025.2526798
000633154 8564_ $$uhttps://bib-pubdb1.desy.de/record/633154/files/2025ozsoy_deconvoluting-cracking-mechanisms.pdf$$yOpenAccess
000633154 8564_ $$uhttps://bib-pubdb1.desy.de/record/633154/files/2025ozsoy_deconvoluting-cracking-mechanisms.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000633154 909CO $$ooai:bib-pubdb1.desy.de:633154$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000633154 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1105330$$a PSI$$b0
000633154 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1107547$$a PSI$$b1
000633154 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1083530$$a PSI$$b2
000633154 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1111874$$a PSI$$b3
000633154 9101_ $$0I:(DE-HGF)0$$60000-0002-1684-2507$$a RMIT$$b4
000633154 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1016294$$a ESRF$$b5
000633154 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1083297$$aDeutsches Elektronen-Synchrotron$$b6$$kDESY
000633154 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a PSI$$b7
000633154 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a EPFL$$b8
000633154 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1020213$$a PSI$$b9
000633154 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x0
000633154 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x1
000633154 9141_ $$y2025
000633154 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-13
000633154 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-13
000633154 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-13
000633154 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000633154 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-13
000633154 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bVIRTUAL PHYS PROTOTY : 2022$$d2024-12-13
000633154 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bVIRTUAL PHYS PROTOTY : 2022$$d2024-12-13
000633154 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-07-24T12:21:10Z
000633154 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-07-24T12:21:10Z
000633154 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-13
000633154 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2024-12-13
000633154 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-13
000633154 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000633154 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-13
000633154 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2024-12-13
000633154 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-13
000633154 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-13
000633154 9201_ $$0I:(DE-H253)PETRA_III-20150811$$kPETRA III$$lPETRA III$$x0
000633154 9201_ $$0I:(DE-H253)FS-PET-D-20190712$$kFS-PET-D$$lExperimentebetreuung PETRA III$$x1
000633154 980__ $$ajournal
000633154 980__ $$aVDB
000633154 980__ $$aUNRESTRICTED
000633154 980__ $$aI:(DE-H253)PETRA_III-20150811
000633154 980__ $$aI:(DE-H253)FS-PET-D-20190712
000633154 9801_ $$aFullTexts