000633011 001__ 633011
000633011 005__ 20250907054607.0
000633011 0247_ $$2doi$$a10.1002/smll.202502060
000633011 0247_ $$2ISSN$$a1613-6810
000633011 0247_ $$2ISSN$$a1613-6829
000633011 0247_ $$2datacite_doi$$a10.3204/PUBDB-2025-02337
000633011 0247_ $$2altmetric$$aaltmetric:177588833
000633011 0247_ $$2pmid$$apmid:40442952
000633011 037__ $$aPUBDB-2025-02337
000633011 041__ $$aEnglish
000633011 082__ $$a620
000633011 1001_ $$aZhou, Weijun$$b0
000633011 245__ $$aProgrammable Protein‐DNA Composite Nanostructures: from Nanostructure Construction to Protein‐Induced Micro‐Scale Material Self‐Assembly and Functionalization
000633011 260__ $$aWeinheim$$bWiley-VCH$$c2025
000633011 3367_ $$2DRIVER$$aarticle
000633011 3367_ $$2DataCite$$aOutput Types/Journal article
000633011 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1756712609_909882
000633011 3367_ $$2BibTeX$$aARTICLE
000633011 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000633011 3367_ $$00$$2EndNote$$aJournal Article
000633011 520__ $$aThe integration of DNA and protein-designed nanostructures represents a transformative approach to the development of programmable biopolymers for nanoscale construction. While DNA nanostructures excel in the readily programmable precision and scalability of base pairing, protein assemblies exploit the chemical diversity of amino acids for greater functional versatility. Here a platform is presented that unifies these two paradigms by combining coiled-coil protein origami with DNA nanostructures through orthogonal protein-protein (SpyCatcher-SpyTag) and protein-DNA (DCV-DNA) covalent conjugation strategies. This dual-functionalization strategy enables the construction of stable and versatile protein-DNA composites capable of hierarchical self-assembly. This shows that these composites drive the transformation of DNA nanotubes into large-scale, patterned nanofibers or nanorods, with the proteins regularly distributed over their surface and retaining their enzymatic and fluorescent functions. In addition, a DNA-luciferase circuit is developed through split enzyme reconstitution to achieve reversible regulation of enzymatic activity, highlighting the dynamic functionality of these composites. This introduces a modular approach to producing multifunctional bio-nanomaterials, highlighting the potential of protein-DNA composite nanostructures as a bridge between molecular design and functional nanomaterials and paves the way for the development of dynamic bio-devices and programmable biomaterials.
000633011 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x0
000633011 536__ $$0G:(EU-Grant)101070817$$aLoopOfFun - Closed-loop control of fungal materials (101070817)$$c101070817$$fHORIZON-EIC-2021-PATHFINDERCHALLENGES-01$$x1
000633011 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000633011 693__ $$0EXP:(DE-H253)P-P12-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P12-20150101$$aPETRA III$$fPETRA Beamline P12$$x0
000633011 7001_ $$aStrmšek, Žiga$$b1
000633011 7001_ $$aSnoj, Jaka$$b2
000633011 7001_ $$aŠkarabot, Miha$$b3
000633011 7001_ $$0P:(DE-H253)PIP1109845$$aJerala, Roman$$b4$$eCorresponding author
000633011 773__ $$0PERI:(DE-600)2168935-0$$a10.1002/smll.202502060$$gp. 2502060$$n30$$p2502060$$tSmall$$v21$$x1613-6810$$y2025
000633011 8564_ $$uhttps://onlinelibrary.wiley.com/doi/full/10.1002/smll.202502060
000633011 8564_ $$uhttps://bib-pubdb1.desy.de/record/633011/files/Small%20-%202025%20-%20Zhou%20-%20Programmable%20Protein%E2%80%90DNA%20Composite%20Nanostructures%20from%20Nanostructure%20Construction%20to%20Protein%E2%80%90Induced-1.pdf$$yOpenAccess
000633011 8564_ $$uhttps://bib-pubdb1.desy.de/record/633011/files/Small%20-%202025%20-%20Zhou%20-%20Programmable%20Protein%E2%80%90DNA%20Composite%20Nanostructures%20from%20Nanostructure%20Construction%20to%20Protein%E2%80%90Induced-1.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000633011 909CO $$ooai:bib-pubdb1.desy.de:633011$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000633011 9101_ $$0I:(DE-588b)235011-7$$6P:(DE-H253)PIP1109845$$aEuropean Molecular Biology Laboratory$$b4$$kEMBL
000633011 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1109845$$aExternal Institute$$b4$$kExtern
000633011 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x0
000633011 9141_ $$y2025
000633011 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-27
000633011 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-27
000633011 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000633011 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSMALL : 2022$$d2024-12-27
000633011 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2024-12-27$$wger
000633011 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-27
000633011 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bSMALL : 2022$$d2024-12-27
000633011 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-27
000633011 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000633011 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-27
000633011 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-27
000633011 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-27
000633011 9201_ $$0I:(DE-H253)EMBL-User-20120814$$kEMBL-User$$lEMBL-User$$x0
000633011 980__ $$ajournal
000633011 980__ $$aVDB
000633011 980__ $$aUNRESTRICTED
000633011 980__ $$aI:(DE-H253)EMBL-User-20120814
000633011 9801_ $$aFullTexts