000632999 001__ 632999
000632999 005__ 20250929152624.0
000632999 0247_ $$2doi$$a10.1021/jacs.4c06765
000632999 0247_ $$2ISSN$$a0002-7863
000632999 0247_ $$2ISSN$$a1520-5126
000632999 0247_ $$2ISSN$$a1943-2984
000632999 0247_ $$2datacite_doi$$a10.3204/PUBDB-2025-02325
000632999 0247_ $$2altmetric$$aaltmetric:168479182
000632999 0247_ $$2pmid$$apmid:39322628
000632999 0247_ $$2openalex$$aopenalex:W4402837773
000632999 037__ $$aPUBDB-2025-02325
000632999 041__ $$aEnglish
000632999 082__ $$a540
000632999 1001_ $$0P:(DE-H253)PIP1103271$$aZhang, Yuyan$$b0
000632999 245__ $$aDesign and Understanding of Adaptive Hydrogenation Catalysts Triggered by the H$_2/$CO$^{2–}$Formic Acid Equilibrium
000632999 260__ $$aWashington, DC$$bACS Publications$$c2024
000632999 3367_ $$2DRIVER$$aarticle
000632999 3367_ $$2DataCite$$aOutput Types/Journal article
000632999 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1754917500_4018731
000632999 3367_ $$2BibTeX$$aARTICLE
000632999 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000632999 3367_ $$00$$2EndNote$$aJournal Article
000632999 520__ $$aAn adaptive catalytic system for selective hydrogenation was developed exploiting the H$_2$ + CO$_2$ ⇔ HCOOH equilibrium for reversible, rapid, and robust on/off switch of the ketone hydrogenation activity of ruthenium nanoparticles (Ru NPs). The catalyst design was based on mechanistic studies and DFT calculations demonstrating that adsorption of formic acid to Ru NPs on silica results in surface formate species that prevent C═O hydrogenation. Ru NPs were immobilized on readily accessible silica supports modified with guanidinium-based ionic liquid phases (Ru@SILPGB) to generate in situ sufficient amounts of HCOOH when CO$_2$ was introduced into the H$_2$ feed gas for switching off ketone hydrogenation while maintaining the activity for hydrogenation of olefinic and aromatic C═C bonds. Upon shutting down the CO$_2$ supply, the C═O hydrogenation activity was restored in real time due to the rapid decarboxylation of the surface formate species without the need for any changes in the reaction conditions. Thus, the newly developed Ru@SILPGB catalysts allow controlled and alternating production of either saturated alcohols or ketones from unsaturated substrates depending on the use of H$_2$ or H$_2$/CO$_2$ as feed gas. The major prerequisite for design of adaptive catalytic systems based on CO$_2$ as trigger is the ability to shift the H$_2$ + CO$_2$ ⇔ HCOOH equilibrium sufficiently to exploit competing adsorption of surface formate and targeted functional groups. Thus, the concept can be expected to be more generally applicable beyond ruthenium as the active metal, paving the way for next-generation adaptive catalytic systems in hydrogenation reactions more broadly.
000632999 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x0
000632999 536__ $$0G:(DE-H253)I-20220137$$aFS-Proposal: I-20220137 (I-20220137)$$cI-20220137$$x1
000632999 536__ $$0G:(GEPRIS)390919832$$aDFG project G:(GEPRIS)390919832 - EXC 2186: Das Fuel Science Center – Adaptive Umwandlungssysteme für erneuerbare Energie- und Kohlenstoffquellen (390919832)$$c390919832$$x2
000632999 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000632999 693__ $$0EXP:(DE-H253)P-P65-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P65-20150101$$aPETRA III$$fPETRA Beamline P65$$x0
000632999 7001_ $$0P:(DE-HGF)0$$aLevin, Natalia$$b1
000632999 7001_ $$0P:(DE-H253)PIP1085988$$aKang, Liqun$$b2
000632999 7001_ $$0P:(DE-H253)PIP1104586$$aMueller, Felix$$b3
000632999 7001_ $$0P:(DE-H253)PIP1014346$$aZobel, Mirijam$$b4
000632999 7001_ $$0P:(DE-H253)PIP1015325$$aDeBeer, Serena$$b5
000632999 7001_ $$0P:(DE-HGF)0$$aLeitner, Walter$$b6$$eCorresponding author
000632999 7001_ $$0P:(DE-H253)PIP1086018$$aBordet, Alexis$$b7$$eCorresponding author
000632999 773__ $$0PERI:(DE-600)1472210-0$$a10.1021/jacs.4c06765$$gVol. 146, no. 44, p. 30057 - 30067$$n44$$p30057 - 30067$$tJournal of the American Chemical Society$$v146$$x0002-7863$$y2024
000632999 8564_ $$uhttps://bib-pubdb1.desy.de/record/632999/files/zhang-et-al-2024-design-and-understanding-of-adaptive-hydrogenation-catalysts-triggered-by-the-h2-co2-formic-acid.pdf$$yOpenAccess
000632999 8564_ $$uhttps://bib-pubdb1.desy.de/record/632999/files/zhang-et-al-2024-design-and-understanding-of-adaptive-hydrogenation-catalysts-triggered-by-the-h2-co2-formic-acid.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000632999 909CO $$ooai:bib-pubdb1.desy.de:632999$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000632999 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1103271$$aExternal Institute$$b0$$kExtern
000632999 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1085988$$aExternal Institute$$b2$$kExtern
000632999 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1104586$$aExternal Institute$$b3$$kExtern
000632999 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1014346$$aExternal Institute$$b4$$kExtern
000632999 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1015325$$aExternal Institute$$b5$$kExtern
000632999 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1086018$$aExternal Institute$$b7$$kExtern
000632999 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x0
000632999 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-13
000632999 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-13
000632999 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-13
000632999 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-13
000632999 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-13
000632999 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bJ AM CHEM SOC : 2022$$d2024-12-13
000632999 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ AM CHEM SOC : 2022$$d2024-12-13
000632999 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-13
000632999 915__ $$0StatID:(DE-HGF)1210$$2StatID$$aDBCoverage$$bIndex Chemicus$$d2024-12-13
000632999 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-13
000632999 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-13
000632999 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000632999 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-13
000632999 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-13
000632999 915__ $$0StatID:(DE-HGF)1200$$2StatID$$aDBCoverage$$bChemical Reactions$$d2024-12-13
000632999 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-13
000632999 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000632999 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-13$$wger
000632999 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-13
000632999 9201_ $$0I:(DE-H253)FS_DOOR-User-20241023$$kFS DOOR-User$$lFS DOOR-User$$x0
000632999 980__ $$ajournal
000632999 980__ $$aVDB
000632999 980__ $$aUNRESTRICTED
000632999 980__ $$aI:(DE-H253)FS_DOOR-User-20241023
000632999 9801_ $$aFullTexts