000632978 001__ 632978
000632978 005__ 20250723110122.0
000632978 0247_ $$2doi$$a10.1039/D5TA02072G
000632978 0247_ $$2ISSN$$a2050-7488
000632978 0247_ $$2ISSN$$a2050-7496
000632978 0247_ $$2openalex$$aopenalex:W4410902261
000632978 037__ $$aPUBDB-2025-02304
000632978 041__ $$aEnglish
000632978 082__ $$a530
000632978 1001_ $$0P:(DE-H253)PIP1101301$$aBorup, Anders$$b0
000632978 245__ $$aIn situ X-ray diffraction guided synthesis of Ni$_2$P nanoparticles for the oxygen evolution reaction
000632978 260__ $$aLondon ˜[u.a.]œ$$bRSC$$c2025
000632978 3367_ $$2DRIVER$$aarticle
000632978 3367_ $$2DataCite$$aOutput Types/Journal article
000632978 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1752223414_2516333
000632978 3367_ $$2BibTeX$$aARTICLE
000632978 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000632978 3367_ $$00$$2EndNote$$aJournal Article
000632978 500__ $$aWaiting for fulltext
000632978 520__ $$aNickel phosphides are considered excellent candidates as catalysts for the oxygen evolution reaction (OER) under alkaline conditions. This study first investigates the nucleation and growth of Ni2P during hydrothermal synthesis by in situ powder X-ray diffraction. It is found that Ni2P nanoparticles are formed throughout the temperature range of 150 °C to 300 °C, but above 225 °C a transition of Ni2P to Ni12P5 is observed. Data recorded at multiple temperatures allow activation energies for the nucleation of Ni2P, growth of Ni2P, and the Ni2P to Ni12P5 phase transitions to be estimated as 91.0(5) kJ mol−1, 62.3(9) kJ mol−1, and 115.5(7) kJ mol−1, respectively. The in situ data further reveals that the Ni2P crystallite sizes can be controlled by varying the reaction time and temperature, and correspondingly ex situ autoclave syntheses were performed to obtain phase-pure Ni2P nanoparticles with sizes of ∼20 nm, ∼25 nm, and ∼30 nm. Furthermore, with short reaction times partly amorphous ∼20 nm and ∼25 nm Ni2P nanoparticles are obtained. Using fully crystalline standards, the crystallinity of the nanoparticles is determined to infer amorphous impurities, and the effects of both crystallinity and crystallite size for the nanoparticle Ni2P catalyst towards OER under alkaline conditions are established. The crystalline Ni2P nanoparticle samples show an almost constant overpotential ranging from 413 to 417 mV and a minor increase in the Tafel slope from 60.5 to 71.7 mV dec−1 with increasing crystallite size. In contrast, the Ni2P nanoparticles with excess amorphous phosphorus exhibit significantly higher Tafel slopes of 95.8 (∼20 nm) and 89.6 mV dec−1 (∼25 nm). Absolute crystallinity is very rarely quantified in studies of nanoparticle catalysts, but the present results highlight that crystallinity determination can be used to suggest the presence of amorphous impurities, which in this case have a larger impact than crystallite size when optimizing electrode characteristics for electrocatalytic water splitting.
000632978 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x0
000632978 536__ $$0G:(DE-H253)I-20211382-EC$$aFS-Proposal: I-20211382 EC (I-20211382-EC)$$cI-20211382-EC$$x1
000632978 536__ $$0G:(DE-H253)I-20230406$$aFS-Proposal: I-20230406 (I-20230406)$$cI-20230406$$x2
000632978 536__ $$0G:(DE-H253)I-20220468$$aFS-Proposal: I-20220468 (I-20220468)$$cI-20220468$$x3
000632978 536__ $$0G:(DE-H253)I-20210940$$aFS-Proposal: I-20210940 (I-20210940)$$cI-20210940$$x4
000632978 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000632978 693__ $$0EXP:(DE-H253)P-P21.1-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P21.1-20150101$$aPETRA III$$fPETRA Beamline P21.1$$x0
000632978 7001_ $$0P:(DE-HGF)0$$aPhan, Nhu-Quynh Thi$$b1
000632978 7001_ $$0P:(DE-HGF)0$$aKløve, Magnus$$b2
000632978 7001_ $$0P:(DE-H253)PIP1087044$$aBertelsen, Andreas$$b3
000632978 7001_ $$0P:(DE-H253)PIP1107952$$aStøckler, Lise$$b4
000632978 7001_ $$0P:(DE-HGF)0$$aIversen, Bo Brummerstedt$$b5$$eCorresponding author
000632978 773__ $$0PERI:(DE-600)2702232-8$$a10.1039/D5TA02072G$$gVol. 13, no. 27, p. 21876 - 21887$$n27$$p21876 - 21887$$tJournal of materials chemistry / A$$v13$$x2050-7488$$y2025
000632978 8564_ $$uhttps://bib-pubdb1.desy.de/record/632978/files/In%20situ%20X-ray%20diffraction%20guided%20synthesis%20of%20Ni2P%20nanoparticles%20for%20the%20oxygen%20evolution%20reaction.pdf$$yRestricted
000632978 8564_ $$uhttps://bib-pubdb1.desy.de/record/632978/files/In%20situ%20X-ray%20diffraction%20guided%20synthesis%20of%20Ni2P%20nanoparticles%20for%20the%20oxygen%20evolution%20reaction.pdf?subformat=pdfa$$xpdfa$$yRestricted
000632978 909CO $$ooai:bib-pubdb1.desy.de:632978$$pVDB
000632978 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2024-12-05$$wger
000632978 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MATER CHEM A : 2022$$d2024-12-05
000632978 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-05
000632978 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-05
000632978 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-05
000632978 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-05
000632978 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-05
000632978 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-05
000632978 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-05
000632978 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-05
000632978 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bJ MATER CHEM A : 2022$$d2024-12-05
000632978 9141_ $$y2025
000632978 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1101301$$aExternal Institute$$b0$$kExtern
000632978 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1101301$$aEuropean XFEL$$b0$$kXFEL.EU
000632978 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1087044$$aExternal Institute$$b3$$kExtern
000632978 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1107952$$aEuropean XFEL$$b4$$kXFEL.EU
000632978 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x0
000632978 9201_ $$0I:(DE-H253)FS_DOOR-User-20241023$$kFS DOOR-User$$lFS DOOR-User$$x0
000632978 980__ $$ajournal
000632978 980__ $$aVDB
000632978 980__ $$aI:(DE-H253)FS_DOOR-User-20241023
000632978 980__ $$aUNRESTRICTED