000632962 001__ 632962
000632962 005__ 20250723110123.0
000632962 0247_ $$2doi$$a10.3390/biom15070944
000632962 0247_ $$2datacite_doi$$a10.3204/PUBDB-2025-02290
000632962 0247_ $$2openalex$$aopenalex:W4411929730
000632962 037__ $$aPUBDB-2025-02290
000632962 041__ $$aEnglish
000632962 082__ $$a570
000632962 1001_ $$0P:(DE-H253)PIP1105789$$aPokrywka, Kinga$$b0$$eCorresponding author
000632962 245__ $$aProbing the Active Site of Class 3 L-Asparaginase by Mutagenesis: Mutations of the Ser-Lys Tandems of ReAV
000632962 260__ $$aBasel$$bMDPI$$c2025
000632962 3367_ $$2DRIVER$$aarticle
000632962 3367_ $$2DataCite$$aOutput Types/Journal article
000632962 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1752141090_3597535
000632962 3367_ $$2BibTeX$$aARTICLE
000632962 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000632962 3367_ $$00$$2EndNote$$aJournal Article
000632962 520__ $$aThe ReAV enzyme from Rhizobium etli, a representative of Class 3 L-asparaginases, is sequentially and structurally different from other known L-asparaginases. This distinctiveness makes ReAV a candidate for novel antileukemic therapies. ReAV is a homodimeric protein, with each subunit containing a highly specific zinc-binding site created by two cysteines, a lysine, and a water molecule. Two Ser-Lys tandems (Ser48-Lys51, Ser80-Lys263) are located in the close proximity of the metal binding site, with Ser48 hypothesized to be the catalytic nucleophile. To further investigate the catalytic process of ReAV, site-directed mutagenesis was employed to introduce alanine substitutions at residues from the Ser-Lys tandems and at Arg47, located near the Ser48-Lys51 tandem. These mutational studies, along with enzymatic assays and X-ray structure determinations, demonstrated that substitution of each of these highly conserved residues abolished the catalytic activity, confirming their essential role in enzyme mechanism.
000632962 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x0
000632962 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000632962 693__ $$0EXP:(DE-H253)P-P13-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P13-20150101$$aPETRA III$$fPETRA Beamline P13$$x0
000632962 7001_ $$aGrzechowiak, Marta$$b1
000632962 7001_ $$aSliwiak, Joanna$$b2
000632962 7001_ $$aWorsztynowicz, Paulina$$b3
000632962 7001_ $$00000-0002-7345-4527$$aLoch, Joanna I.$$b4
000632962 7001_ $$aRuszkowski, Milosz$$b5
000632962 7001_ $$aGilski, Miroslaw$$b6
000632962 7001_ $$aJaskolski, Mariusz$$b7$$eCorresponding author
000632962 773__ $$0PERI:(DE-600)2701262-1$$a10.3390/biom15070944$$gVol. 15, no. 7, p. 944 -$$n7$$p944 -$$tBiomolecules$$v15$$x2218-273X$$y2025
000632962 8564_ $$uhttps://www.mdpi.com/2218-273X/15/7/944
000632962 8564_ $$uhttps://bib-pubdb1.desy.de/record/632962/files/Probing%20the%20Active%20Site%20of%20Class%203%20L%20Asparaginase%20by%20Mutagenesis%20Mutations%20of%20the%20Ser%20Lys%20Tandems%20of%20ReAV.pdf$$yOpenAccess
000632962 8564_ $$uhttps://bib-pubdb1.desy.de/record/632962/files/Probing%20the%20Active%20Site%20of%20Class%203%20L%20Asparaginase%20by%20Mutagenesis%20Mutations%20of%20the%20Ser%20Lys%20Tandems%20of%20ReAV.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000632962 909CO $$ooai:bib-pubdb1.desy.de:632962$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000632962 9101_ $$0I:(DE-588b)235011-7$$6P:(DE-H253)PIP1105789$$aEuropean Molecular Biology Laboratory$$b0$$kEMBL
000632962 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1105789$$aExternal Institute$$b0$$kExtern
000632962 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x0
000632962 9141_ $$y2025
000632962 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-11
000632962 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-11
000632962 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-11
000632962 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-11
000632962 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-11
000632962 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBIOMOLECULES : 2022$$d2024-12-11
000632962 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-04-10T15:31:02Z
000632962 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-04-10T15:31:02Z
000632962 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-11
000632962 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2024-12-11
000632962 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-11
000632962 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000632962 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-11
000632962 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2024-12-11
000632962 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bBIOMOLECULES : 2022$$d2024-12-11
000632962 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-11
000632962 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000632962 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-11
000632962 9201_ $$0I:(DE-H253)EMBL-User-20120814$$kEMBL-User$$lEMBL-User$$x0
000632962 980__ $$ajournal
000632962 980__ $$aVDB
000632962 980__ $$aUNRESTRICTED
000632962 980__ $$aI:(DE-H253)EMBL-User-20120814
000632962 9801_ $$aFullTexts