| Home > Publications database > Enhanced Ionic Conductivity and Electrochemical Properties of Li$_2$B$_{12}$H$_{12}$/ZrO$_2$ Nanocomposites for All-Solid-State Lithium Metal Batteries > print |
| 001 | 632939 | ||
| 005 | 20250715151529.0 | ||
| 024 | 7 | _ | |a 10.1021/acsami.5c01939 |2 doi |
| 024 | 7 | _ | |a 10.3204/PUBDB-2025-02267 |2 datacite_doi |
| 024 | 7 | _ | |2 openalex |a openalex:W4410952621 |
| 037 | _ | _ | |a PUBDB-2025-02267 |
| 041 | _ | _ | |a English |
| 082 | _ | _ | |a 600 |
| 100 | 1 | _ | |a Hehn, Jonas |0 P:(DE-H253)PIP1109300 |b 0 |
| 245 | _ | _ | |a Enhanced Ionic Conductivity and Electrochemical Properties of Li$_2$B$_{12}$H$_{12}$/ZrO$_2$ Nanocomposites for All-Solid-State Lithium Metal Batteries |
| 260 | _ | _ | |a Washington, DC |c 2025 |b Soc. |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1752231956_3141222 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Solid-state electrolytes play a key role in the development of safe and high-capacity all-solid-state batteries. Complex hydrides such as Li$_2$B$_{12}$H$_{12}$ are attractive as solid electrolytes due to their low weight and good electrochemical stability, but suffer from low conductivities at room temperature. Herein, we report a three-order-magnitude increase in the ionic conductivity of Li$_2$B$_{12}$H$_{12}$ upon nanocomposite formation with ZrO$_2$ via mechanochemical treatment, reaching 2.9 × 10$^{–4}$ S cm$^{–1}$ at 30 °C. Results from infrared spectroscopy, X-ray Raman scattering and electron microscopy coupled with electron energy loss spectroscopy suggest that the increased ionic conductivity is due to strong interfacial interaction/reaction between Li$_2$B$_{12}$H$_{12}$ and ZrO$_2$. This leads to a highly defective interphase region where the Li, B, Zr, and O chemical environments are distinctively different from the bulk Li$_2$B$_{12}$H$_{12}$ and ZrO$_2$. The improved ionic conductivity of the nanocomposite compared to the pristine material enabled the realization of all-solid-state batteries with a Li metal anode and both TiS$_2$ and LiFePO$_4$ cathodes. We demonstrate the suitability of the nanocomposite at various charging rates up to C/2 (0.34 mA cm$^{–2}$) for over 170 cycles at 40–60 °C (Li|Li$_2$B$_{12}$H$_{12}$/ZrO2|TiS$_2$). |
| 536 | _ | _ | |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632) |0 G:(DE-HGF)POF4-632 |c POF4-632 |f POF IV |x 0 |
| 536 | _ | _ | |a 6G3 - PETRA III (DESY) (POF4-6G3) |0 G:(DE-HGF)POF4-6G3 |c POF4-6G3 |f POF IV |x 1 |
| 536 | _ | _ | |a SMART-X - Study of carrier transport in MAterials by time-Resolved specTroscopy with ultrashort soft X-ray light (860553) |0 G:(EU-Grant)860553 |c 860553 |f H2020-MSCA-ITN-2019 |x 2 |
| 588 | _ | _ | |a Dataset connected to DataCite |
| 693 | _ | _ | |a PETRA III |f PETRA Beamline P01 |1 EXP:(DE-H253)PETRAIII-20150101 |0 EXP:(DE-H253)P-P01-20150101 |6 EXP:(DE-H253)P-P01-20150101 |x 0 |
| 700 | 1 | _ | |a Rodenburg, Hendrik P. |0 P:(DE-HGF)0 |b 1 |
| 700 | 1 | _ | |a Lazemi, Masoud |0 P:(DE-H253)PIP1099335 |b 2 |
| 700 | 1 | _ | |a Verschoor, Juliette |0 P:(DE-H253)PIP1107377 |b 3 |
| 700 | 1 | _ | |a Perich, Marta Perxés |0 P:(DE-HGF)0 |b 4 |
| 700 | 1 | _ | |a Sundermann, Martin |0 P:(DE-H253)PIP1028536 |b 5 |
| 700 | 1 | _ | |a Gretarsson, Hlynur |0 P:(DE-H253)PIP1029079 |b 6 |u desy |
| 700 | 1 | _ | |a van der Hoeven, Jessi E. S. |0 P:(DE-HGF)0 |b 7 |
| 700 | 1 | _ | |a de Groot, Frank |0 P:(DE-H253)PIP1105294 |b 8 |
| 700 | 1 | _ | |a de Jongh, Petra |0 P:(DE-H253)PIP1007474 |b 9 |
| 700 | 1 | _ | |a Ngene, Peter |0 P:(DE-H253)PIP1008788 |b 10 |e Corresponding author |
| 773 | _ | _ | |a 10.1021/acsami.5c01939 |0 PERI:(DE-600)2467494-1 |n 23 |p 33824 – 33833 |t ACS applied materials & interfaces |v 17 |y 2025 |x 1944-8244 |
| 856 | 4 | _ | |u https://doi.org/10.1021/acsami.5c01939 |
| 856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/632939/files/hehn-et-al-2025-enhanced-ionic-conductivity-and-electrochemical-properties-of-li2b12h12-zro2-nanocomposites-for-all.pdf |y OpenAccess |
| 856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/632939/files/hehn-et-al-2025-enhanced-ionic-conductivity-and-electrochemical-properties-of-li2b12h12-zro2-nanocomposites-for-all.pdf?subformat=pdfa |x pdfa |y OpenAccess |
| 909 | C | O | |o oai:bib-pubdb1.desy.de:632939 |p openaire |p open_access |p driver |p VDB |p ec_fundedresources |p dnbdelivery |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 0 |6 P:(DE-H253)PIP1109300 |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 2 |6 P:(DE-H253)PIP1099335 |
| 910 | 1 | _ | |a European XFEL |0 I:(DE-588)1043621512 |k XFEL.EU |b 2 |6 P:(DE-H253)PIP1099335 |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 3 |6 P:(DE-H253)PIP1107377 |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 5 |6 P:(DE-H253)PIP1028536 |
| 910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 6 |6 P:(DE-H253)PIP1029079 |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 8 |6 P:(DE-H253)PIP1105294 |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 9 |6 P:(DE-H253)PIP1007474 |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 10 |6 P:(DE-H253)PIP1008788 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Von Materie zu Materialien und Leben |1 G:(DE-HGF)POF4-630 |0 G:(DE-HGF)POF4-632 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Materials – Quantum, Complex and Functional Materials |x 0 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Großgeräte: Materie |1 G:(DE-HGF)POF4-6G0 |0 G:(DE-HGF)POF4-6G3 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v PETRA III (DESY) |x 1 |
| 914 | 1 | _ | |y 2025 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-13 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2024-12-13 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2024-12-13 |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ACS APPL MATER INTER : 2022 |d 2024-12-13 |
| 915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b ACS APPL MATER INTER : 2022 |d 2024-12-13 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2024-12-13 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-13 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-13 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-13 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-13 |
| 920 | 1 | _ | |0 I:(DE-H253)HAS-User-20120731 |k DOOR ; HAS-User |l DOOR-User |x 0 |
| 920 | 1 | _ | |0 I:(DE-H253)FS-PETRA-S-20210408 |k FS-PETRA-S |l PETRA-S |x 1 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-H253)HAS-User-20120731 |
| 980 | _ | _ | |a I:(DE-H253)FS-PETRA-S-20210408 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|