000632939 001__ 632939
000632939 005__ 20250715151529.0
000632939 0247_ $$2doi$$a10.1021/acsami.5c01939
000632939 0247_ $$2datacite_doi$$a10.3204/PUBDB-2025-02267
000632939 0247_ $$2openalex$$aopenalex:W4410952621
000632939 037__ $$aPUBDB-2025-02267
000632939 041__ $$aEnglish
000632939 082__ $$a600
000632939 1001_ $$0P:(DE-H253)PIP1109300$$aHehn, Jonas$$b0
000632939 245__ $$aEnhanced Ionic Conductivity and Electrochemical Properties of Li$_2$B$_{12}$H$_{12}$/ZrO$_2$ Nanocomposites for All-Solid-State Lithium Metal Batteries
000632939 260__ $$aWashington, DC$$bSoc.$$c2025
000632939 3367_ $$2DRIVER$$aarticle
000632939 3367_ $$2DataCite$$aOutput Types/Journal article
000632939 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1752231956_3141222
000632939 3367_ $$2BibTeX$$aARTICLE
000632939 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000632939 3367_ $$00$$2EndNote$$aJournal Article
000632939 520__ $$aSolid-state electrolytes play a key role in the development of safe and high-capacity all-solid-state batteries. Complex hydrides such as Li$_2$B$_{12}$H$_{12}$ are attractive as solid electrolytes due to their low weight and good electrochemical stability, but suffer from low conductivities at room temperature. Herein, we report a three-order-magnitude increase in the ionic conductivity of Li$_2$B$_{12}$H$_{12}$ upon nanocomposite formation with ZrO$_2$ via mechanochemical treatment, reaching 2.9 × 10$^{–4}$ S cm$^{–1}$ at 30 °C. Results from infrared spectroscopy, X-ray Raman scattering and electron microscopy coupled with electron energy loss spectroscopy suggest that the increased ionic conductivity is due to strong interfacial interaction/reaction between Li$_2$B$_{12}$H$_{12}$ and ZrO$_2$. This leads to a highly defective interphase region where the Li, B, Zr, and O chemical environments are distinctively different from the bulk Li$_2$B$_{12}$H$_{12}$ and ZrO$_2$. The improved ionic conductivity of the nanocomposite compared to the pristine material enabled the realization of all-solid-state batteries with a Li metal anode and both TiS$_2$ and LiFePO$_4$ cathodes. We demonstrate the suitability of the nanocomposite at various charging rates up to C/2 (0.34 mA cm$^{–2}$) for over 170 cycles at 40–60 °C (Li|Li$_2$B$_{12}$H$_{12}$/ZrO2|TiS$_2$).
000632939 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
000632939 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x1
000632939 536__ $$0G:(EU-Grant)860553$$aSMART-X - Study of carrier transport in MAterials by time-Resolved specTroscopy with ultrashort soft X-ray light (860553)$$c860553$$fH2020-MSCA-ITN-2019$$x2
000632939 588__ $$aDataset connected to DataCite
000632939 693__ $$0EXP:(DE-H253)P-P01-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P01-20150101$$aPETRA III$$fPETRA Beamline P01$$x0
000632939 7001_ $$0P:(DE-HGF)0$$aRodenburg, Hendrik P.$$b1
000632939 7001_ $$0P:(DE-H253)PIP1099335$$aLazemi, Masoud$$b2
000632939 7001_ $$0P:(DE-H253)PIP1107377$$aVerschoor, Juliette$$b3
000632939 7001_ $$0P:(DE-HGF)0$$aPerich, Marta Perxés$$b4
000632939 7001_ $$0P:(DE-H253)PIP1028536$$aSundermann, Martin$$b5
000632939 7001_ $$0P:(DE-H253)PIP1029079$$aGretarsson, Hlynur$$b6$$udesy
000632939 7001_ $$0P:(DE-HGF)0$$avan der Hoeven, Jessi E. S.$$b7
000632939 7001_ $$0P:(DE-H253)PIP1105294$$ade Groot, Frank$$b8
000632939 7001_ $$0P:(DE-H253)PIP1007474$$ade Jongh, Petra$$b9
000632939 7001_ $$0P:(DE-H253)PIP1008788$$aNgene, Peter$$b10$$eCorresponding author
000632939 773__ $$0PERI:(DE-600)2467494-1$$a10.1021/acsami.5c01939$$n23$$p33824 – 33833$$tACS applied materials & interfaces$$v17$$x1944-8244$$y2025
000632939 8564_ $$uhttps://doi.org/10.1021/acsami.5c01939
000632939 8564_ $$uhttps://bib-pubdb1.desy.de/record/632939/files/hehn-et-al-2025-enhanced-ionic-conductivity-and-electrochemical-properties-of-li2b12h12-zro2-nanocomposites-for-all.pdf$$yOpenAccess
000632939 8564_ $$uhttps://bib-pubdb1.desy.de/record/632939/files/hehn-et-al-2025-enhanced-ionic-conductivity-and-electrochemical-properties-of-li2b12h12-zro2-nanocomposites-for-all.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000632939 909CO $$ooai:bib-pubdb1.desy.de:632939$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000632939 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1109300$$aExternal Institute$$b0$$kExtern
000632939 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1099335$$aExternal Institute$$b2$$kExtern
000632939 9101_ $$0I:(DE-588)1043621512$$6P:(DE-H253)PIP1099335$$aEuropean XFEL$$b2$$kXFEL.EU
000632939 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1107377$$aExternal Institute$$b3$$kExtern
000632939 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1028536$$aExternal Institute$$b5$$kExtern
000632939 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1029079$$aDeutsches Elektronen-Synchrotron$$b6$$kDESY
000632939 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1105294$$aExternal Institute$$b8$$kExtern
000632939 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1007474$$aExternal Institute$$b9$$kExtern
000632939 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1008788$$aExternal Institute$$b10$$kExtern
000632939 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x0
000632939 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x1
000632939 9141_ $$y2025
000632939 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-13
000632939 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-13
000632939 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-13
000632939 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000632939 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS APPL MATER INTER : 2022$$d2024-12-13
000632939 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACS APPL MATER INTER : 2022$$d2024-12-13
000632939 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-13
000632939 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-13
000632939 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000632939 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-13
000632939 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-13
000632939 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-13
000632939 9201_ $$0I:(DE-H253)HAS-User-20120731$$kDOOR ; HAS-User$$lDOOR-User$$x0
000632939 9201_ $$0I:(DE-H253)FS-PETRA-S-20210408$$kFS-PETRA-S$$lPETRA-S$$x1
000632939 980__ $$ajournal
000632939 980__ $$aVDB
000632939 980__ $$aUNRESTRICTED
000632939 980__ $$aI:(DE-H253)HAS-User-20120731
000632939 980__ $$aI:(DE-H253)FS-PETRA-S-20210408
000632939 9801_ $$aFullTexts