001     631969
005     20250715151532.0
024 7 _ |a 10.1021/acsami.5c09657
|2 doi
024 7 _ |a 1944-8244
|2 ISSN
024 7 _ |a 1944-8252
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2025-02084
|2 datacite_doi
024 7 _ |a altmetric:178086049
|2 altmetric
024 7 _ |a pmid:40512020
|2 pmid
024 7 _ |2 openalex
|a openalex:W4411278272
037 _ _ |a PUBDB-2025-02084
041 _ _ |a English
082 _ _ |a 600
100 1 _ |a Deka, Dhruba Jyoti
|0 P:(DE-H253)PIP1114355
|b 0
245 _ _ |a Tyrosinase Enzyme-Inspired Cu(I)-Porous Organic Polymer for Selective Oxidation of Biomass-Derived 5-HMF
260 _ _ |a Washington, DC
|c 2025
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1751973733_2380179
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In biobased PET, terephthalic acid (TPA) can be replaced with biobase alternatives like bioderived 5-diformylfuran (DFF). In this work, we have selectively synthesized DFF from the oxidation of 5-hydroxymethylfurfural (HMF) using our tyrosinase enzyme-inspired catalysts vicinal V-Cu-POP and nonvicinal NV-Cu-POP, respectively. Motivated by the oxygenated form of tyrosinase, we introduced binuclear copper(I) moieties into a porous organic polymer to create enzyme-inspired heterogeneous catalysts for the selective oxidation of HMF. V-Cu-POP can effectively activate O$_2$ for mild and selective oxidation because the two Cu centers are in close proximity, which is impossible in the case of NV-Cu-POP. For the determination of the coordination environment of the catalytically active site, the X-ray absorption near-edge structure (XANES) studies and the copper(I) state for both the enzyme-inspired catalysts V-Cu-POP and NV-Cu-POP are identified through characteristic features in the absorption spectra. The fitting parameters and EXAFS spectra rule out the formation of the Cu–Cu bond. Further, the key intermediate μ-hydroxy species (Cu (II)–O–O–Cu (II)), which forms during the reaction in the case of the enzyme-inspired catalyst, V-Cu-POP is also confirmed by time-resolved in situ ATR-IR spectroscopy and DFT computational study. This intermediate is not formed in the case of nonvicinal NV-Cu-POP, which is the main reason for lower catalytic activity toward HMF oxidation. NV-Cu-POP still retains the peaks of reactants at the same reaction conditions, which is confirmed by time-resolved in situ ATR-IR spectroscopy. Overall, in this study, we have shown how a tyrosinase enzyme-inspired catalyst exhibits greater catalytic activity toward the oxidation reaction due to the formation of its vicinal conformer compared to the nonvicinal conformer.
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|f POF IV
|x 0
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P64
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P64-20150101
|6 EXP:(DE-H253)P-P64-20150101
|x 0
700 1 _ |a Boro, Bishal
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Chen, Yuping
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Chahal, Kapil
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Nandy, Subhajit
|0 P:(DE-H253)PIP1108447
|b 4
|u desy
700 1 _ |a Wang, Caiqi
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Lin, Hongfei
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Tang, Qing
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Mondal, John
|0 P:(DE-H253)PIP1114361
|b 8
|e Corresponding author
773 _ _ |a 10.1021/acsami.5c09657
|g Vol. 17, no. 25, p. 36840 - 36854
|0 PERI:(DE-600)2467494-1
|n 25
|p 36840 - 36854
|t ACS applied materials & interfaces
|v 17
|y 2025
|x 1944-8244
856 4 _ |u https://bib-pubdb1.desy.de/record/631969/files/Tyrosinase%20Enzyme-Inspired%20Cu%28I%29-Porous%20Organic%20Polymer%20for%20Selective%20Oxidation%20of%20Biomass-Derived%205-HMF%2C%20ACS%20Appl.%20Mater.%20%26%20Interfaces%2C%2017%20%2825%29%2C%2036840-36854%2C%20%282025%29.pdf
856 4 _ |y Published on 2025-06-13. Available in OpenAccess from 2026-06-13.
|u https://bib-pubdb1.desy.de/record/631969/files/Supporting%20Information%20for%20Review.pdf
856 4 _ |x pdfa
|u https://bib-pubdb1.desy.de/record/631969/files/Tyrosinase%20Enzyme-Inspired%20Cu%28I%29-Porous%20Organic%20Polymer%20for%20Selective%20Oxidation%20of%20Biomass-Derived%205-HMF%2C%20ACS%20Appl.%20Mater.%20%26%20Interfaces%2C%2017%20%2825%29%2C%2036840-36854%2C%20%282025%29.pdf?subformat=pdfa
856 4 _ |y Published on 2025-06-13. Available in OpenAccess from 2026-06-13.
|x pdfa
|u https://bib-pubdb1.desy.de/record/631969/files/Supporting%20Information%20for%20Review.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:631969
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1114355
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 4
|6 P:(DE-H253)PIP1108447
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 8
|6 P:(DE-H253)PIP1114361
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 1
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-13
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS APPL MATER INTER : 2022
|d 2024-12-13
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ACS APPL MATER INTER : 2022
|d 2024-12-13
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-13
920 1 _ |0 I:(DE-H253)FS-PETRA-S-20210408
|k FS-PETRA-S
|l PETRA-S
|x 0
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)FS-PETRA-S-20210408
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21