001     631870
005     20250723110014.0
024 7 _ |a 10.1021/acscentsci.4c02157
|2 doi
024 7 _ |a 2374-7943
|2 ISSN
024 7 _ |a 2374-7951
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2025-02067
|2 datacite_doi
024 7 _ |a altmetric:175442922
|2 altmetric
024 7 _ |a pmid:40161960
|2 pmid
024 7 _ |a openalex:W4408439203
|2 openalex
037 _ _ |a PUBDB-2025-02067
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Schembri, Tim
|b 0
245 _ _ |a Supramolecular Engineering of Narrow Absorption Bands by Exciton Coupling in Pristine and Mixed Solid-State Dye Aggregates
260 _ _ |a Washington, DC
|c 2025
|b ACS Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1751622981_2336550
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Tunability of functional properties in a continuous manner is desired but challenging to accomplish for organic solid-state materials. Herein, we describe a method for tuning optoelectronic properties of solid-state aggregates with narrow absorption bands. First, we systematically shift the absorption maxima of highly dipolar merocyanine dyes in solution by chemical alterations of their chromophore cores. This leaves their solid-state packing arrangements unchanged, affording similar J- and H-coupled aggregate absorption bands at different wavelengths. Next, mixing these isostructural dyes leads to a spectral fine-tuning of the mixed layers, which could be characterized as crystalline organic solid solutions and utilized in narrowband color-selective organic photodiodes. Finally, we devise a semiempirical model, which explains the observed spectral tuning in terms of the molecular exciton theory. Thus, we demonstrate narrowband absorbing solid-state aggregates spanning the wavelength range of 437–760 nm, whose absorption can be fine-tuned over 40% of the visible light range.
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 0
536 _ _ |a FS-Proposal: I-20211168 (I-20211168)
|0 G:(DE-H253)I-20211168
|c I-20211168
|x 1
536 _ _ |a FS-Proposal: I-20230262 (I-20230262)
|0 G:(DE-H253)I-20230262
|c I-20230262
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P11
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P11-20150101
|6 EXP:(DE-H253)P-P11-20150101
|x 0
700 1 _ |a Albert, Julius
|b 1
700 1 _ |a Hebling, Hendrik
|b 2
700 1 _ |a Stepanenko, Vladimir
|b 3
700 1 _ |a Anhalt, Olga
|0 P:(DE-H253)PIP1110402
|b 4
700 1 _ |a Shoyama, Kazutaka
|0 P:(DE-H253)PIP1094122
|b 5
700 1 _ |a Stolte, Matthias
|b 6
700 1 _ |a Wuerthner, Frank
|0 P:(DE-H253)PIP1094247
|b 7
|e Corresponding author
773 _ _ |a 10.1021/acscentsci.4c02157
|g Vol. 11, no. 3, p. 452 - 464
|0 PERI:(DE-600)2816030-7
|n 3
|p 452 - 464
|t ACS central science
|v 11
|y 2025
|x 2374-7943
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/631870/files/schembri-et-al-2025-supramolecular-engineering-of-narrow-absorption-bands-by-exciton-coupling-in-pristine-and-mixed.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/631870/files/schembri-et-al-2025-supramolecular-engineering-of-narrow-absorption-bands-by-exciton-coupling-in-pristine-and-mixed.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:631870
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 P:(DE-H253)PIP1110402
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-H253)PIP1094122
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 7
|6 P:(DE-H253)PIP1094247
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-19
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b ACS CENTRAL SCI : 2022
|d 2024-12-19
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS CENTRAL SCI : 2022
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-04-18T10:17:59Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-04-18T10:17:59Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-19
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-04-18T10:17:59Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-19
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21