000631512 001__ 631512
000631512 005__ 20250723110016.0
000631512 0247_ $$2doi$$a10.1088/1757-899X/1327/1/012011
000631512 0247_ $$2ISSN$$a1757-8981
000631512 0247_ $$2ISSN$$a1757-899X
000631512 0247_ $$2datacite_doi$$a10.3204/PUBDB-2025-02024
000631512 0247_ $$2openalex$$aopenalex:W4410889770
000631512 037__ $$aPUBDB-2025-02024
000631512 041__ $$aEnglish
000631512 082__ $$a530
000631512 1001_ $$0P:(DE-H253)PIP1098069$$aAbassi, E.$$b0$$eCorresponding author$$udesy
000631512 1112_ $$a29th International Cryogenic Engineering Conference, International Cryogenic Materials Conference 2024$$cGeneva$$d2024-07-22 - 2024-07-26$$gICEC29/ICMC 2024$$wSwitzerland
000631512 245__ $$aHeat load measurements of XFEL cryomodules using helium evaporation method
000631512 260__ $$aLondon [u.a.]$$bInstitute of Physics$$c2025
000631512 300__ $$a6
000631512 3367_ $$2ORCID$$aCONFERENCE_PAPER
000631512 3367_ $$033$$2EndNote$$aConference Paper
000631512 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$mjournal
000631512 3367_ $$2BibTeX$$aINPROCEEDINGS
000631512 3367_ $$2DRIVER$$aconferenceObject
000631512 3367_ $$2DataCite$$aOutput Types/Conference Paper
000631512 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1751982882_2380176
000631512 520__ $$aThe European XFEL Free Electron Laser (EuXFEL) at DESY is at 2K operation since January 2017. User operation with a maximum beam energy of 17,5 GeV began in September 2017. Studies are ongoing for a possible upgrade to operate XFEL at higher duty factors and lower cavity gradients. For this purpose, dynamic heat loads should be measured precisely to evaluate the cryomodules performances and the needed cooling capacity of refrigeration plant. This paper describes a heat loads measurement method based on measurements of the amount of helium evaporated from LHe II bath during a certain time period. A distinctive feature of this method is its insensitivity to eventual leaks across the seats of JT-valves. Furthermore, possible errors in the LHeII level readings can be minimized using this method. This paper summarizes the experience gained so far with this method at the EuXFEL linac and the CryoModule Test Bench (CMTB). Issues that have arisen during the measurements are discussed and conclusions are drawn. Results of the heat load measurements in CW mode are presented for a single cryomodule at CMTB.
000631512 536__ $$0G:(DE-HGF)POF4-621$$a621 - Accelerator Research and Development (POF4-621)$$cPOF4-621$$fPOF IV$$x0
000631512 536__ $$0G:(DE-HGF)POF4-6G13$$a6G13 - Accelerator of European XFEL (POF4-6G13)$$cPOF4-6G13$$fPOF IV$$x1
000631512 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000631512 693__ $$0EXP:(DE-H253)XFEL(machine)-20150101$$1EXP:(DE-H253)XFEL-20150101$$5EXP:(DE-H253)XFEL(machine)-20150101$$aXFEL$$eFacility (machine) XFEL$$x0
000631512 7001_ $$0P:(DE-H253)PIP1006618$$aBarbanotti, S.$$b1$$udesy
000631512 7001_ $$0P:(DE-H253)PIP1000493$$aBozhko, Y.$$b2$$udesy
000631512 7001_ $$0P:(DE-H253)PIP1005320$$aSchnautz, T.$$b3$$udesy
000631512 7001_ $$0P:(DE-H253)PIP1002378$$aJensch, K.$$b4$$udesy
000631512 7001_ $$0P:(DE-H253)PIP1011701$$aPenning, J.$$b5$$udesy
000631512 7001_ $$0P:(DE-H253)PIP1001056$$aZajac, J.$$b6
000631512 773__ $$0PERI:(DE-600)2506501-4$$a10.1088/1757-899X/1327/1/012011$$gVol. 1327, no. 1, p. 012011 -$$n1$$p012011 $$tIOP conference series / Materials science and engineering$$v1327$$x1757-8981$$y2025
000631512 8564_ $$uhttps://iopscience.iop.org/article/10.1088/1757-899X/1327/1/012011
000631512 8564_ $$uhttps://bib-pubdb1.desy.de/record/631512/files/HTML-Approval_of_scientific_publication.html
000631512 8564_ $$uhttps://bib-pubdb1.desy.de/record/631512/files/PDF-Approval_of_scientific_publication.pdf
000631512 8564_ $$uhttps://bib-pubdb1.desy.de/record/631512/files/Heat%20load%20measurements%20of%20XFEL%20cryomodules%20using%20helium%20evaporation%20method.pdf$$yOpenAccess
000631512 8564_ $$uhttps://bib-pubdb1.desy.de/record/631512/files/Heat%20load%20measurements%20of%20XFEL%20cryomodules%20using%20helium%20evaporation%20method.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000631512 909CO $$ooai:bib-pubdb1.desy.de:631512$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000631512 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1098069$$aDeutsches Elektronen-Synchrotron$$b0$$kDESY
000631512 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1006618$$aDeutsches Elektronen-Synchrotron$$b1$$kDESY
000631512 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1000493$$aDeutsches Elektronen-Synchrotron$$b2$$kDESY
000631512 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1005320$$aDeutsches Elektronen-Synchrotron$$b3$$kDESY
000631512 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1002378$$aDeutsches Elektronen-Synchrotron$$b4$$kDESY
000631512 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1011701$$aDeutsches Elektronen-Synchrotron$$b5$$kDESY
000631512 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1001056$$aExternal Institute$$b6$$kExtern
000631512 9131_ $$0G:(DE-HGF)POF4-621$$1G:(DE-HGF)POF4-620$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMaterie und Technologie$$vAccelerator Research and Development$$x0
000631512 9131_ $$0G:(DE-HGF)POF4-6G13$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vAccelerator of European XFEL$$x1
000631512 9141_ $$y2025
000631512 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000631512 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-06
000631512 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-06
000631512 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000631512 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-06$$wger
000631512 9201_ $$0I:(DE-H253)MKS1-20210408$$kMKS1$$lKryogenik$$x0
000631512 980__ $$acontrib
000631512 980__ $$aVDB
000631512 980__ $$aUNRESTRICTED
000631512 980__ $$ajournal
000631512 980__ $$aI:(DE-H253)MKS1-20210408
000631512 9801_ $$aFullTexts