000631509 001__ 631509 000631509 005__ 20250715171330.0 000631509 0247_ $$2doi$$a10.1088/1757-899X/1301/1/012046 000631509 0247_ $$2ISSN$$a1757-8981 000631509 0247_ $$2ISSN$$a1757-899X 000631509 0247_ $$2datacite_doi$$a10.3204/PUBDB-2025-02021 000631509 0247_ $$2openalex$$aopenalex:W4400360120 000631509 037__ $$aPUBDB-2025-02021 000631509 041__ $$aEnglish 000631509 082__ $$a530 000631509 1001_ $$0P:(DE-H253)PIP1006618$$aBarbanotti, Serena$$b0 000631509 1112_ $$aCryogenic Engineering Conference & Internation Cryogenic Material Conference$$cHonolulu$$d2023-07-09 - 2023-07-13$$gCEC/ICMC23$$wUSA 000631509 245__ $$aLoss of insulation vacuum tests on an EuXFEL cryomodule 000631509 260__ $$aLondon [u.a.]$$bInstitute of Physics$$c2024 000631509 300__ $$a9 000631509 3367_ $$2ORCID$$aCONFERENCE_PAPER 000631509 3367_ $$033$$2EndNote$$aConference Paper 000631509 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$mjournal 000631509 3367_ $$2BibTeX$$aINPROCEEDINGS 000631509 3367_ $$2DRIVER$$aconferenceObject 000631509 3367_ $$2DataCite$$aOutput Types/Conference Paper 000631509 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1751982748_2380177 000631509 520__ $$aMany Free Electron Lasers (FEL) are nowadays based on linear superconducting accelerators (linacs). The typical layout of such a linac consists of a number of cryomodules (CMs) arranged in strings. Each cryogenic circuit in a string is protected by safety valves (SVs) in case of failure of the system or a catastrophic event. A typical worst-case scenario considers the venting of the insulation vacuum, causing a fast and uncontrolled warm up of the cryogenic circuits. Such venting can for example take place across a pump port belonging to a string. The amount of heat deposited on each circuit is a very important parameter to correctly size the safety devices.This paper describes the tests performed at DESY on an EuXFEL cryomodule to evaluate the heat input to the three cryogenic circuits of the CM while venting the insulation vacuum. Test results are given with a particular focus of their application to long strings. 000631509 536__ $$0G:(DE-HGF)POF4-621$$a621 - Accelerator Research and Development (POF4-621)$$cPOF4-621$$fPOF IV$$x0 000631509 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de 000631509 693__ $$0EXP:(DE-H253)XFEL(machine)-20150101$$1EXP:(DE-H253)XFEL-20150101$$5EXP:(DE-H253)XFEL(machine)-20150101$$aXFEL$$eFacility (machine) XFEL$$x0 000631509 7001_ $$0P:(DE-H253)PIP1002947$$aBoeckmann, Torsten$$b1 000631509 7001_ $$0P:(DE-H253)PIP1000493$$aBozhko, Yury$$b2$$eCorresponding author 000631509 7001_ $$0P:(DE-H253)PIP1002378$$aJensch, Kay$$b3 000631509 7001_ $$0P:(DE-H253)PIP1002224$$aKlos, Ronald$$b4 000631509 7001_ $$0P:(DE-H253)PIP1093254$$aRamalingam, Rajinikumar$$b5 000631509 7001_ $$0P:(DE-H253)PIP1097860$$aDhillon, Aman Kumar$$b6$$eCorresponding author 000631509 7001_ $$0P:(DE-H253)PIP1005320$$aSchnautz, Tobias$$b7 000631509 7001_ $$0P:(DE-H253)PIP1001524$$aSellmann, Detlef$$b8 000631509 773__ $$0PERI:(DE-600)2506501-4$$a10.1088/1757-899X/1301/1/012046$$gVol. 1301, no. 1, p. 012046 -$$n1$$p012046 $$tIOP conference series / Materials science and engineering$$v1301$$x1757-8981$$y2024 000631509 8564_ $$uhttps://iopscience.iop.org/article/10.1088/1757-899X/1301/1/012046 000631509 8564_ $$uhttps://bib-pubdb1.desy.de/record/631509/files/HTML-Approval_of_scientific_publication.html 000631509 8564_ $$uhttps://bib-pubdb1.desy.de/record/631509/files/PDF-Approval_of_scientific_publication.pdf 000631509 8564_ $$uhttps://bib-pubdb1.desy.de/record/631509/files/Loss%20of%20insulation%20vacuum%20tests%20on%20an%20EuXFEL%20cryomodule.pdf$$yOpenAccess 000631509 8564_ $$uhttps://bib-pubdb1.desy.de/record/631509/files/Loss%20of%20insulation%20vacuum%20tests%20on%20an%20EuXFEL%20cryomodule.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000631509 909CO $$ooai:bib-pubdb1.desy.de:631509$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000631509 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1006618$$aDeutsches Elektronen-Synchrotron$$b0$$kDESY 000631509 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1002947$$aDeutsches Elektronen-Synchrotron$$b1$$kDESY 000631509 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1000493$$aDeutsches Elektronen-Synchrotron$$b2$$kDESY 000631509 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1002378$$aDeutsches Elektronen-Synchrotron$$b3$$kDESY 000631509 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1002224$$aDeutsches Elektronen-Synchrotron$$b4$$kDESY 000631509 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1093254$$aDeutsches Elektronen-Synchrotron$$b5$$kDESY 000631509 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1097860$$aDeutsches Elektronen-Synchrotron$$b6$$kDESY 000631509 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1005320$$aDeutsches Elektronen-Synchrotron$$b7$$kDESY 000631509 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1001524$$aDeutsches Elektronen-Synchrotron$$b8$$kDESY 000631509 9131_ $$0G:(DE-HGF)POF4-621$$1G:(DE-HGF)POF4-620$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMaterie und Technologie$$vAccelerator Research and Development$$x0 000631509 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000631509 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-06 000631509 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-06 000631509 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000631509 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-06$$wger 000631509 9201_ $$0I:(DE-H253)MKS1-20210408$$kMKS1$$lKryogenik$$x0 000631509 980__ $$acontrib 000631509 980__ $$aVDB 000631509 980__ $$aUNRESTRICTED 000631509 980__ $$ajournal 000631509 980__ $$aI:(DE-H253)MKS1-20210408 000631509 9801_ $$aFullTexts