000631509 001__ 631509
000631509 005__ 20250715171330.0
000631509 0247_ $$2doi$$a10.1088/1757-899X/1301/1/012046
000631509 0247_ $$2ISSN$$a1757-8981
000631509 0247_ $$2ISSN$$a1757-899X
000631509 0247_ $$2datacite_doi$$a10.3204/PUBDB-2025-02021
000631509 0247_ $$2openalex$$aopenalex:W4400360120
000631509 037__ $$aPUBDB-2025-02021
000631509 041__ $$aEnglish
000631509 082__ $$a530
000631509 1001_ $$0P:(DE-H253)PIP1006618$$aBarbanotti, Serena$$b0
000631509 1112_ $$aCryogenic Engineering Conference & Internation Cryogenic Material Conference$$cHonolulu$$d2023-07-09 - 2023-07-13$$gCEC/ICMC23$$wUSA
000631509 245__ $$aLoss of insulation vacuum tests on an EuXFEL cryomodule
000631509 260__ $$aLondon [u.a.]$$bInstitute of Physics$$c2024
000631509 300__ $$a9
000631509 3367_ $$2ORCID$$aCONFERENCE_PAPER
000631509 3367_ $$033$$2EndNote$$aConference Paper
000631509 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$mjournal
000631509 3367_ $$2BibTeX$$aINPROCEEDINGS
000631509 3367_ $$2DRIVER$$aconferenceObject
000631509 3367_ $$2DataCite$$aOutput Types/Conference Paper
000631509 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1751982748_2380177
000631509 520__ $$aMany Free Electron Lasers (FEL) are nowadays based on linear superconducting accelerators (linacs). The typical layout of such a linac consists of a number of cryomodules (CMs) arranged in strings. Each cryogenic circuit in a string is protected by safety valves (SVs) in case of failure of the system or a catastrophic event. A typical worst-case scenario considers the venting of the insulation vacuum, causing a fast and uncontrolled warm up of the cryogenic circuits. Such venting can for example take place across a pump port belonging to a string. The amount of heat deposited on each circuit is a very important parameter to correctly size the safety devices.This paper describes the tests performed at DESY on an EuXFEL cryomodule to evaluate the heat input to the three cryogenic circuits of the CM while venting the insulation vacuum. Test results are given with a particular focus of their application to long strings.
000631509 536__ $$0G:(DE-HGF)POF4-621$$a621 - Accelerator Research and Development (POF4-621)$$cPOF4-621$$fPOF IV$$x0
000631509 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000631509 693__ $$0EXP:(DE-H253)XFEL(machine)-20150101$$1EXP:(DE-H253)XFEL-20150101$$5EXP:(DE-H253)XFEL(machine)-20150101$$aXFEL$$eFacility (machine) XFEL$$x0
000631509 7001_ $$0P:(DE-H253)PIP1002947$$aBoeckmann, Torsten$$b1
000631509 7001_ $$0P:(DE-H253)PIP1000493$$aBozhko, Yury$$b2$$eCorresponding author
000631509 7001_ $$0P:(DE-H253)PIP1002378$$aJensch, Kay$$b3
000631509 7001_ $$0P:(DE-H253)PIP1002224$$aKlos, Ronald$$b4
000631509 7001_ $$0P:(DE-H253)PIP1093254$$aRamalingam, Rajinikumar$$b5
000631509 7001_ $$0P:(DE-H253)PIP1097860$$aDhillon, Aman Kumar$$b6$$eCorresponding author
000631509 7001_ $$0P:(DE-H253)PIP1005320$$aSchnautz, Tobias$$b7
000631509 7001_ $$0P:(DE-H253)PIP1001524$$aSellmann, Detlef$$b8
000631509 773__ $$0PERI:(DE-600)2506501-4$$a10.1088/1757-899X/1301/1/012046$$gVol. 1301, no. 1, p. 012046 -$$n1$$p012046 $$tIOP conference series / Materials science and engineering$$v1301$$x1757-8981$$y2024
000631509 8564_ $$uhttps://iopscience.iop.org/article/10.1088/1757-899X/1301/1/012046
000631509 8564_ $$uhttps://bib-pubdb1.desy.de/record/631509/files/HTML-Approval_of_scientific_publication.html
000631509 8564_ $$uhttps://bib-pubdb1.desy.de/record/631509/files/PDF-Approval_of_scientific_publication.pdf
000631509 8564_ $$uhttps://bib-pubdb1.desy.de/record/631509/files/Loss%20of%20insulation%20vacuum%20tests%20on%20an%20EuXFEL%20cryomodule.pdf$$yOpenAccess
000631509 8564_ $$uhttps://bib-pubdb1.desy.de/record/631509/files/Loss%20of%20insulation%20vacuum%20tests%20on%20an%20EuXFEL%20cryomodule.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000631509 909CO $$ooai:bib-pubdb1.desy.de:631509$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000631509 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1006618$$aDeutsches Elektronen-Synchrotron$$b0$$kDESY
000631509 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1002947$$aDeutsches Elektronen-Synchrotron$$b1$$kDESY
000631509 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1000493$$aDeutsches Elektronen-Synchrotron$$b2$$kDESY
000631509 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1002378$$aDeutsches Elektronen-Synchrotron$$b3$$kDESY
000631509 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1002224$$aDeutsches Elektronen-Synchrotron$$b4$$kDESY
000631509 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1093254$$aDeutsches Elektronen-Synchrotron$$b5$$kDESY
000631509 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1097860$$aDeutsches Elektronen-Synchrotron$$b6$$kDESY
000631509 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1005320$$aDeutsches Elektronen-Synchrotron$$b7$$kDESY
000631509 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1001524$$aDeutsches Elektronen-Synchrotron$$b8$$kDESY
000631509 9131_ $$0G:(DE-HGF)POF4-621$$1G:(DE-HGF)POF4-620$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMaterie und Technologie$$vAccelerator Research and Development$$x0
000631509 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000631509 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-06
000631509 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-06
000631509 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000631509 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-06$$wger
000631509 9201_ $$0I:(DE-H253)MKS1-20210408$$kMKS1$$lKryogenik$$x0
000631509 980__ $$acontrib
000631509 980__ $$aVDB
000631509 980__ $$aUNRESTRICTED
000631509 980__ $$ajournal
000631509 980__ $$aI:(DE-H253)MKS1-20210408
000631509 9801_ $$aFullTexts