TY  - CONF
AU  - Conigli, Alessandro
AU  - Frison, Julien
AU  - Fritzsch, Patrick
AU  - Gérardin, Antoine
AU  - Heitger, Jochen
AU  - Herdoiza, Gregorio
AU  - Kuberski, Simon
AU  - Pena, Carlos
AU  - Simma, Hubert
AU  - Sommer, Rainer
TI  - A strategy for B-physics observables in the continuum limit
JO  - Proceedings of Science / International School for Advanced Studies
VL  - (LATTICE2023)
IS  - DESY-23-216
SN  - 1824-8039
CY  - Trieste
PB  - SISSA
M1  - PUBDB-2025-01983
M1  - DESY-23-216
M1  - arXiv:2312.09811
M1  - HU-EP-23/71
M1  - MS-TP-23-53
T2  - 2737639
SP  - 268
PY  - 2023
N1  - cc-by-nc-ndLattice 2023 talk
AB  - In a somewhat forgotten paper [1] it was shown how to perform interpolations between relativistic and static computations in order to obtain results for heavy-light observables for masses from, say, m<sub>charm</sub> to m<sub>bottom</sub>. All quantities are first continuum extrapolated and then interpolated in 1/m<sub>h</sub>=1/m<sub>heavy</sub>. Large volume computations are combined with finite volume ones where a relativistic bottom quark is accessible with small am<sub>bottom</sub>. We discuss how this strategy is extended to semi-leptonic form factors and other quantities of phenomenological interest. The essential point is to form quantities where the limit m<sub>h</sub>→∞ is approached with power corrections O(1/m<sub>h</sub>) only. Perturbative corrections  ∼ α<sub>s</sub>(m<sub>h</sub>)<sup>γ+n</sup> are cancelled in the construction of the observables. We also point out how such an approach can help to control systematics in semi-leptonic decays with just large volume data. First numerical results with N<sub>f</sub> = 2 + 1 and lattice spacings down to 0.039 fm are presented in [2].
T2  - 40th International Symposium on Lattice Field Theory
CY  - 30 Jul 2023 - 5 Aug 2023, Batavia (United States)
Y2  - 30 Jul 2023 - 5 Aug 2023
M2  - Batavia, United States
KW  - perturbation theory: correction (INSPIRE)
KW  - lattice (INSPIRE)
KW  - charm (INSPIRE)
KW  - quark: mass (INSPIRE)
KW  - continuum limit (INSPIRE)
KW  - form factor (INSPIRE)
KW  - numerical calculations (INSPIRE)
KW  - finite size (INSPIRE)
LB  - PUB:(DE-HGF)16 ; PUB:(DE-HGF)8 ; PUB:(DE-HGF)7
DO  - DOI:10.22323/1.453.0268
UR  - https://bib-pubdb1.desy.de/record/631471
ER  -