001     631269
005     20250715151536.0
024 7 _ |a 10.1021/acsabm.4c01803
|2 doi
024 7 _ |a 10.3204/PUBDB-2025-01941
|2 datacite_doi
024 7 _ |a altmetric:175742287
|2 altmetric
024 7 _ |a pmid:40051331
|2 pmid
024 7 _ |2 openalex
|a openalex:W4408237940
037 _ _ |a PUBDB-2025-01941
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Dalloul, Feras
|b 0
245 _ _ |a From Unprintable Peptidic Gel to Unstoppable: Transforming Diphenylalanine Peptide (Fmoc-FF) Nanowires and Cellulose Nanofibrils into a High-Performance Biobased Gel for 3D Printing
260 _ _ |a Washington, DC
|c 2025
|b ACS Publications
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1752228165_3141222
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The growing interest in gel-based additive manufacturing, also known as three-dimensional (3D) gel-printing technology, for research underscores the crucial need to develop robust biobased materials with excellent printing quality and reproducibility. The main focus of this study is to prepare and characterize some composite gels obtained with a low-molecular-weight gelling (LMWG) peptide called Fmoc-diphenylalanine (Fmoc-FF) and two types of cellulose nanofibrils (CNFs). The so-called Fmoc-FF peptide has the ability to self-assemble into a nanowire shape and therefore create an organized network that induces the formation of a gel. Despite their ease of preparation and potential use in biological systems, unfortunately, those Fmoc-FF nanowire gel systems cannot be 3D printed due to the high stiffness of the gel. For this reason, this study focuses on composite materials made of cellulose nanofibrils and Fmoc-FF nanowires, with the main objective being that the composite gels will be suitable for 3D printing applications. Two types of cellulose nanofibrils are employed in this study: (1) unmodified pristine cellulose nanofibrils (uCNF) and (2) chemically modified cellulose nanofibrils, which ones have been grafted with polymers containing the Fmoc unit on their backbone (CNF-g-Fmoc). The obtained products were characterized through solid-state cross-polarization magic angle-spinning 1H NMR and confocal laser scanning microscopy. Within these two CNF structures, two composite gels were produced: uCNF/Fmoc-FF and CNF-g-Fmoc/Fmoc-FF. The mechanical properties and printability of the composites are assessed using rheology and challenging 3D object printing. With the addition of water, different properties of the gels were observed. In this instance, CNF-g-Fmoc/Fmoc-FF (c = 5.1%) was selected as the most suitable option within this product range. For the composite bearing uCNF, exceptional print quality and mechanical properties are achieved with the CNF/Fmoc-FF gel (c = 5.1%). The structures are characterized by using field emission scanning electron microscopy (FESEM) and small-angle X-ray scattering (SAXS) measurements.
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|f POF IV
|x 0
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 1
536 _ _ |a FS-Proposal: I-20230937 (I-20230937)
|0 G:(DE-H253)I-20230937
|c I-20230937
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P03
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P03-20150101
|6 EXP:(DE-H253)P-P03-20150101
|x 0
700 1 _ |a Mietner, J. Benedikt
|b 1
700 1 _ |a Raveendran, Dhanya
|0 P:(DE-H253)PIP1108989
|b 2
700 1 _ |a Chen, Shouzheng
|0 P:(DE-H253)PIP1101173
|b 3
700 1 _ |a Barba, Enguerrand
|0 P:(DE-H253)PIP1108990
|b 4
700 1 _ |a Möck, Dennis M. J.
|b 5
700 1 _ |a Hubel, Fabio
|b 6
700 1 _ |a Sochor, Benedikt
|0 P:(DE-H253)PIP1096609
|b 7
700 1 _ |a Koyiloth Vayalil, Sarathlal
|0 P:(DE-H253)PIP1015063
|b 8
700 1 _ |a Hesse, Linnea
|0 P:(DE-H253)PIP1101751
|b 9
700 1 _ |a Olbrich, Andrea
|0 P:(DE-H253)PIP1103198
|b 10
700 1 _ |a Appelt, Jörn
|b 11
700 1 _ |a Müller-Buschbaum, Peter
|0 P:(DE-H253)PIP1007825
|b 12
700 1 _ |a Roth, Stephan V.
|0 P:(DE-H253)PIP1003299
|b 13
700 1 _ |a Navarro, Julien R.G.
|0 P:(DE-H253)PIP1107361
|b 14
|e Corresponding author
773 _ _ |a 10.1021/acsabm.4c01803
|g Vol. 8, no. 3, p. 2323 - 2339
|0 PERI:(DE-600)2936886-8
|n 3
|p 2323 - 2339
|t ACS applied bio materials
|v 8
|y 2025
|x 2576-6422
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/631269/files/dalloul-et-al-2025-from-unprintable-peptidic-gel-to-unstoppable-transforming-diphenylalanine-peptide-%28fmoc-ff%29-1.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/631269/files/dalloul-et-al-2025-from-unprintable-peptidic-gel-to-unstoppable-transforming-diphenylalanine-peptide-%28fmoc-ff%29-1.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:631269
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-H253)PIP1108989
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-H253)PIP1101173
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 P:(DE-H253)PIP1108990
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 7
|6 P:(DE-H253)PIP1096609
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 7
|6 P:(DE-H253)PIP1096609
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 8
|6 P:(DE-H253)PIP1015063
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 8
|6 P:(DE-H253)PIP1015063
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 9
|6 P:(DE-H253)PIP1101751
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 10
|6 P:(DE-H253)PIP1103198
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 12
|6 P:(DE-H253)PIP1007825
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 13
|6 P:(DE-H253)PIP1003299
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 13
|6 P:(DE-H253)PIP1003299
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 14
|6 P:(DE-H253)PIP1107361
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 1
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-30
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS APPL BIO MATER : 2022
|d 2024-12-30
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2024-12-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-30
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-30
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-30
920 1 _ |0 I:(DE-H253)FS-PETRA-D-20210408
|k FS-PETRA-D
|l PETRA-D
|x 0
920 1 _ |0 I:(DE-H253)FS-SMA-20220811
|k FS-SMA
|l Sustainable Materials
|x 1
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)FS-PETRA-D-20210408
980 _ _ |a I:(DE-H253)FS-SMA-20220811
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21