000631267 001__ 631267
000631267 005__ 20250715151528.0
000631267 0247_ $$2doi$$a10.1021/acs.jpcc.5c00971
000631267 0247_ $$2ISSN$$a1932-7447
000631267 0247_ $$2ISSN$$a1932-7455
000631267 0247_ $$2altmetric$$aaltmetric:177169850
000631267 0247_ $$2openalex$$aopenalex:W4410397576
000631267 037__ $$aPUBDB-2025-01939
000631267 041__ $$aEnglish
000631267 082__ $$a530
000631267 1001_ $$aJafari, Fatemeh$$b0
000631267 245__ $$aWater Reduction Reaction in the Presence of a Nickel–Iron Metal–Organic Framework: A Case Study
000631267 260__ $$aWashington, DC$$bSoc.$$c2025
000631267 3367_ $$2DRIVER$$aarticle
000631267 3367_ $$2DataCite$$aOutput Types/Journal article
000631267 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1752227536_3135631
000631267 3367_ $$2BibTeX$$aARTICLE
000631267 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000631267 3367_ $$00$$2EndNote$$aJournal Article
000631267 500__ $$aWaiting for fulltext 
000631267 520__ $$aMetal–organic frameworks (MOFs) have garnered significant interest as catalysts for water splitting. However, their stability under the hydrogen evolution reaction (HER) remains relatively unexplored. This study examined the stability of Ni–Fe MOF featuring 1,4-benzene dicarboxylate (1,4-BDC) linkers as (pre)catalysts for HER. Various analytical techniques, especially electrochemical analysis, X-ray absorption spectroscopy (XAS), and scanning electron microscopy (SEM), were employed to elucidate the MOF’s behavior during HER. These methods revealed the transformation of the MOF surface into a metal (hydr)oxide, which acts as the active catalyst for the HER. SEM confirmed significant morphological restructuring of the Ni–Fe MOF surface after HER conditions. These experiments provide new insights into the structural evolution of Ni–Fe MOFs under HER conditions, addressing a critical gap in understanding the stability of MOFs as electrocatalysts. Unlike previous works that primarily focused on catalytic performance, our investigation highlights the transformation pathways of MOFs, revealing their role as precatalysts rather than stable catalysts. Our findings emphasize the necessity of re-evaluating MOFs’ stability under reductive conditions, opening new avenues for the design of more durable MOF-based electrocatalysts. 
000631267 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
000631267 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x1
000631267 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000631267 693__ $$0EXP:(DE-H253)P-P64-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P64-20150101$$aPETRA III$$fPETRA Beamline P64$$x0
000631267 7001_ $$0P:(DE-H253)PIP1108447$$aNandy, Subhajit$$b1
000631267 7001_ $$0P:(DE-HGF)0$$aNajafpour, Mohammad Mahdi$$b2$$eCorresponding author
000631267 773__ $$0PERI:(DE-600)2256522-X$$a10.1021/acs.jpcc.5c00971$$gVol. 129, no. 21, p. 9717 - 9725$$n21$$p9717 - 9725$$tThe journal of physical chemistry / C$$v129$$x1932-7447$$y2025
000631267 8564_ $$uhttps://bib-pubdb1.desy.de/record/631267/files/jafari-et-al-2025-water-reduction-reaction-in-the-presence-of-a-nickel-iron-metal-organic-framework-a-case-study%20%282%29.pdf$$yRestricted
000631267 8564_ $$uhttps://bib-pubdb1.desy.de/record/631267/files/jafari-et-al-2025-water-reduction-reaction-in-the-presence-of-a-nickel-iron-metal-organic-framework-a-case-study%20%282%29.pdf?subformat=pdfa$$xpdfa$$yRestricted
000631267 909CO $$ooai:bib-pubdb1.desy.de:631267$$pVDB
000631267 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1108447$$aDeutsches Elektronen-Synchrotron$$b1$$kDESY
000631267 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1108447$$aExternal Institute$$b1$$kExtern
000631267 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x0
000631267 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x1
000631267 9141_ $$y2025
000631267 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS CHEM C : 2022$$d2024-12-16
000631267 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-16
000631267 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-16
000631267 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-16
000631267 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-16
000631267 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-16
000631267 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-16
000631267 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-16
000631267 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-16
000631267 9201_ $$0I:(DE-H253)HAS-User-20120731$$kDOOR ; HAS-User$$lDOOR-User$$x0
000631267 9201_ $$0I:(DE-H253)FS-PETRA-S-20210408$$kFS-PETRA-S$$lPETRA-S$$x1
000631267 980__ $$ajournal
000631267 980__ $$aVDB
000631267 980__ $$aI:(DE-H253)HAS-User-20120731
000631267 980__ $$aI:(DE-H253)FS-PETRA-S-20210408
000631267 980__ $$aUNRESTRICTED