001     631049
005     20250715151532.0
024 7 _ |a 10.1103/PhysRevLett.134.236203
|2 doi
024 7 _ |a 0031-9007
|2 ISSN
024 7 _ |a 1092-0145
|2 ISSN
024 7 _ |a 1079-7114
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2025-01918
|2 datacite_doi
024 7 _ |2 openalex
|a openalex:W4411277892
037 _ _ |a PUBDB-2025-01918
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Tober, Steffen
|0 P:(DE-H253)PIP1030341
|b 0
|e Corresponding author
|u desy
245 _ _ |a Site-Resolved Near-Surface Cation Diffusion in Magnetite
260 _ _ |a College Park, Md.
|c 2025
|b APS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1750334446_1699581
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In situ nuclear forward scattering shows a thermally induced cation exchange between a 57 Fe3 ⁢O4 thin-film and a Fe3⁢ O4 (001) substrate predominantly in the octahedral sublattice for a temperature range between 470 and 710 K. The overall activation barrier in this temperature range is found to be 19±32  kJ/mol, which is significantly lower than expected from extrapolating a bulk diffusion model. This observation can be attributed to the large out-of-equilibrium cation deficit as determined by surface x-ray diffraction. Despite the relatively low hopping barrier, the diffusion constant is about 5 orders of magnitude lower than expected for magnetite having an equilibrium cation stoichiometry. The results are relevant for applications relying on the near-surface structure and stoichiometry of magnetite, and we argue that the correlation between cation diffusion and stoichiometry may play a role for a wider range of oxide materials.
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|f POF IV
|x 0
536 _ _ |a SFB 986 C07 - Deposition und Stabilität von hochtemperaturfesten geschichteten Metamaterialien (C07) (318029273)
|0 G:(GEPRIS)318029273
|c 318029273
|x 1
536 _ _ |a DFG project G:(GEPRIS)192346071 - SFB 986: Maßgeschneiderte Multiskalige Materialsysteme - M3 (192346071)
|0 G:(GEPRIS)192346071
|c 192346071
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a Nanolab
|e DESY NanoLab: Sample Preparation
|1 EXP:(DE-H253)DESY-NanoLab-20150101
|0 EXP:(DE-H253)Nanolab-01-20150101
|5 EXP:(DE-H253)Nanolab-01-20150101
|x 0
693 _ _ |a Nanolab
|e DESY NanoLab: Surface Spectroscopy
|1 EXP:(DE-H253)DESY-NanoLab-20150101
|0 EXP:(DE-H253)Nanolab-02-20150101
|5 EXP:(DE-H253)Nanolab-02-20150101
|x 1
693 _ _ |a Nanolab
|e DESY NanoLab: X-Ray Diffraction
|1 EXP:(DE-H253)DESY-NanoLab-20150101
|0 EXP:(DE-H253)Nanolab-03-20150101
|5 EXP:(DE-H253)Nanolab-03-20150101
|x 2
693 _ _ |a PETRA III
|f PETRA Beamline P01
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P01-20150101
|6 EXP:(DE-H253)P-P01-20150101
|x 3
700 1 _ |a Schober, Jan-Christian
|0 P:(DE-H253)PIP1033529
|b 1
|u desy
700 1 _ |a Creutzburg, Marcus
|0 P:(DE-H253)PIP1017841
|b 2
|u desy
700 1 _ |a Beck, Esko Erik
|0 P:(DE-H253)PIP1090045
|b 3
|u desy
700 1 _ |a Semione, Guilherme Dalla Lana
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Chung, Simon
|0 P:(DE-H253)PIP1082934
|b 5
|u desy
700 1 _ |a Jacobse, Leon
|0 P:(DE-H253)PIP1085323
|b 6
700 1 _ |a Arndt, Bjoern
|0 P:(DE-H253)PIP1019785
|b 7
700 1 _ |a Vlad, Alina
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Steinbrügge, René
|0 P:(DE-H253)PIP1014894
|b 9
700 1 _ |a Wille, Hans-Christian
|0 P:(DE-H253)PIP1006032
|b 10
|u desy
700 1 _ |a Sergeev, Ilya
|0 P:(DE-H253)PIP1016663
|b 11
|u desy
700 1 _ |a Noei, Heshmat
|0 P:(DE-H253)PIP1018647
|b 12
|u desy
700 1 _ |a Schlage, Kai
|0 P:(DE-H253)PIP1005914
|b 13
|u desy
700 1 _ |a Leupold, Olaf
|0 P:(DE-H253)PIP1002084
|b 14
|u desy
700 1 _ |a Vonk, Vedran
|0 P:(DE-H253)PIP1013931
|b 15
|e Corresponding author
700 1 _ |a Stierle, Andreas
|0 P:(DE-H253)PIP1012873
|b 16
|e Corresponding author
773 _ _ |a 10.1103/PhysRevLett.134.236203
|g Vol. 134, no. 23, p. 236203
|0 PERI:(DE-600)1472655-5
|n 23
|p 236203
|t Physical review letters
|v 134
|y 2025
|x 0031-9007
856 4 _ |u https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.134.236203
856 4 _ |u https://bib-pubdb1.desy.de/record/631049/files/PhysRevLett.134.236203.pdf
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/631049/files/PhysRevLett.134.236203.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:bib-pubdb1.desy.de:631049
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 0
|6 P:(DE-H253)PIP1030341
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 1
|6 P:(DE-H253)PIP1033529
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 2
|6 P:(DE-H253)PIP1017841
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 3
|6 P:(DE-H253)PIP1090045
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-H253)PIP1082934
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 P:(DE-H253)PIP1085323
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 7
|6 P:(DE-H253)PIP1019785
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 8
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 9
|6 P:(DE-H253)PIP1014894
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 10
|6 P:(DE-H253)PIP1006032
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 11
|6 P:(DE-H253)PIP1016663
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 12
|6 P:(DE-H253)PIP1018647
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 13
|6 P:(DE-H253)PIP1005914
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 14
|6 P:(DE-H253)PIP1002084
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 15
|6 P:(DE-H253)PIP1013931
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 16
|6 P:(DE-H253)PIP1012873
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2024-12-21
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-21
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-21
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-21
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-21
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0571
|2 StatID
|b SCOAP3 sponsored Journal
|d 2024-12-21
920 1 _ |0 I:(DE-H253)FS-NL-20120731
|k FS-NL
|l Nanolab
|x 0
920 1 _ |0 I:(DE-H253)FS-PETRA-S-20210408
|k FS-PETRA-S
|l PETRA-S
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)FS-NL-20120731
980 _ _ |a I:(DE-H253)FS-PETRA-S-20210408
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21