001 | 630952 | ||
005 | 20250828212828.0 | ||
024 | 7 | _ | |a 10.1039/D5TC01411E |2 doi |
024 | 7 | _ | |a 2050-7526 |2 ISSN |
024 | 7 | _ | |a 2050-7534 |2 ISSN |
024 | 7 | _ | |a openalex:W4411091073 |2 openalex |
024 | 7 | _ | |a 10.3204/PUBDB-2025-01912 |2 datacite_doi |
037 | _ | _ | |a PUBDB-2025-01912 |
041 | _ | _ | |a English |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Bartosiewicz, Karol |0 P:(DE-H253)PIP1099262 |b 0 |e Corresponding author |
245 | _ | _ | |a Shaping scintillation and UV-VIS-NIR luminescence properties through synergistic lattice disordered engineering and exciton-mediated energy transfer in Pr$^{3+}$ -doped Lu$_{1.5}$Y$_{1.5}$ Al$_{5− x}$Sc$_{x}$O$_{12}$ ( x = 0.0–2.0) garnets |
260 | _ | _ | |a London [u.a.] |c 2025 |b RSC |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1756381360_3940785 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a This study investigated the crystallization behavior, luminescence and scintillation properties of Pr$^{3+}$-doped Lu$_{1.5}$Y$_{1.5}$Al$_{5−x}$Sc$_x$O$_{12}$ (0.0, 0.5, 1.0, 1.5, 2.0) garnets, grown using the micro-pulling-down method, to address challenges associated with the substitution of Sc$^{3+}$ for Al$^{3+}$ ions due to their mismatched ionic radii in the same octahedral crystallographic site. A specially engineered crucible with five independent crystallization capillaries was used, which revealed that Sc$^{3+}$ substitution caused localized melt heterogeneity, resulting in non-uniform melt ejection during crystallization. The threshold of Sc$^{3+}$ ions concentration (x = 1.5) was identified, beyond which further substitution led to the formation of a garnet/bixbyite-like distorted perovskite hypoeutectic structure. This discovered a novel method for crystallization of hypoeutectic crystal growth by exploiting ionic radii mismatches. Vibrational spectroscopy confirmed that Sc3+ ions incorporation disrupted lattice symmetry, increasing structural disorder around Pr3+ ions. This structural modification significantly enhanced luminescence, particularly in the visible and near-infrared (NIR) ranges, achieving a sixteenfold increase in NIR luminescence intensity. Synchrotron radiation excitation spectra revealed that the band gap energy progressively decreased with increasing Sc$^{3+}$ ions concentration. This finding provided crucial insights for designing materials based on band gap engineering strategies. A sixfold improvement in scintillation light yield, reaching 11 200 photons per MeV, was observed in the Lu$_{1.5}$Y$_{1.5}$Al$_{3.5}$Sc$_{1.5}$O$_{12}$ crystal (x = 1.5). The enhancement resulted from a Sc$^{3+}$-mediated energy transfer pathway $(Sc_{e^- \to h^-}$$^{3+}$$\to Pr^{3+})$, which optimized charge carrier dynamics by reducing deep trapping center density by an order of magnitude while preserving shallow traps. The EPR spectroscopy showed that Sc$^{3+}$ incorporation reduced concentration of trace impurities, enhancing scintillation light yield. It also confirmed that F$^{+}$–Pr$^{3+}$ interactions intensified Pr$^{3+}$ emission at 370 nm and identified the 410–420 nm band as originating from F$^+$–O$^−$ defect pairs. These findings demonstrate that controlled lattice modification through Sc$^{3+}$ incorporation allows for tuning structural and luminescent properties, offering a new approach for the design of advanced scintillators and luminescent materials with improved performance for targeted applications. |
536 | _ | _ | |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632) |0 G:(DE-HGF)POF4-632 |c POF4-632 |f POF IV |x 0 |
536 | _ | _ | |a 6G3 - PETRA III (DESY) (POF4-6G3) |0 G:(DE-HGF)POF4-6G3 |c POF4-6G3 |f POF IV |x 1 |
536 | _ | _ | |a P4F - Physics For Future (101081515) |0 G:(EU-Grant)101081515 |c 101081515 |f HORIZON-MSCA-2021-COFUND-01 |x 2 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de |
693 | _ | _ | |a PETRA III |f PETRA Beamline P66 |1 EXP:(DE-H253)PETRAIII-20150101 |0 EXP:(DE-H253)P-P66-20150101 |6 EXP:(DE-H253)P-P66-20150101 |x 0 |
700 | 1 | _ | |a Smortsova, Yevheniia |0 P:(DE-H253)PIP1101946 |b 1 |
700 | 1 | _ | |a Radmoski, Piotr |0 0000-0002-0041-9480 |b 2 |
700 | 1 | _ | |a Witkowski, Marcin E. |b 3 |
700 | 1 | _ | |a Drozdowski, Konrad J. |0 0000-0001-7459-7194 |b 4 |
700 | 1 | _ | |a Yoshino, Masao |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Horiai, Takahiko |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Szymański, Damian |0 P:(DE-H253)PIP1017632 |b 7 |
700 | 1 | _ | |a Dewo, Wioletta |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Zeler, Justyna |0 0000-0002-2484-5484 |b 9 |
700 | 1 | _ | |a Socha, Paweł |0 P:(DE-HGF)0 |b 10 |
700 | 1 | _ | |a Buryi, Maksym |0 P:(DE-HGF)0 |b 11 |
700 | 1 | _ | |a Prokhorov, Andrey |0 0000-0002-5019-5411 |b 12 |
700 | 1 | _ | |a John, David |0 0000-0003-3359-3212 |b 13 |
700 | 1 | _ | |a Volf, Jakub |0 P:(DE-HGF)0 |b 14 |
700 | 1 | _ | |a Runka, Tomasz |0 P:(DE-HGF)0 |b 15 |
700 | 1 | _ | |a Pędziński, Tomasz |0 P:(DE-HGF)0 |b 16 |
700 | 1 | _ | |a Hauza, Karol |0 P:(DE-HGF)0 |b 17 |
700 | 1 | _ | |a Jarý, Vítězslav |0 P:(DE-H253)PIP1011795 |b 18 |
700 | 1 | _ | |a Shoji, Yasuhiro |0 P:(DE-HGF)0 |b 19 |
700 | 1 | _ | |a Kamada, Kei |0 P:(DE-HGF)0 |b 20 |
700 | 1 | _ | |a Zych, Eugeniusz |0 P:(DE-H253)PIP1007348 |b 21 |
700 | 1 | _ | |a Drozdowski, Winicjusz |0 0000-0002-6207-4801 |b 22 |
700 | 1 | _ | |a Yoshikawa, Akira |0 P:(DE-HGF)0 |b 23 |
773 | _ | _ | |a 10.1039/D5TC01411E |g p. 10.1039.D5TC01411E |0 PERI:(DE-600)2702245-6 |n 27 |p 13691 - 13712 |t Journal of materials chemistry / C |v 13 |y 2025 |x 2050-7526 |
856 | 4 | _ | |u https://pubs.rsc.org/en/content/articlelanding/2025/tc/d5tc01411e |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/630952/files/d5tc01411e.pdf |y OpenAccess |
856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/630952/files/d5tc01411e.pdf?subformat=pdfa |x pdfa |y OpenAccess |
909 | C | O | |o oai:bib-pubdb1.desy.de:630952 |p openaire |p open_access |p driver |p VDB |p ec_fundedresources |p dnbdelivery |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 0 |6 P:(DE-H253)PIP1099262 |
910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 1 |6 P:(DE-H253)PIP1101946 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 7 |6 P:(DE-H253)PIP1017632 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 18 |6 P:(DE-H253)PIP1011795 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 21 |6 P:(DE-H253)PIP1007348 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Von Materie zu Materialien und Leben |1 G:(DE-HGF)POF4-630 |0 G:(DE-HGF)POF4-632 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Materials – Quantum, Complex and Functional Materials |x 0 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Großgeräte: Materie |1 G:(DE-HGF)POF4-6G0 |0 G:(DE-HGF)POF4-6G3 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v PETRA III (DESY) |x 1 |
914 | 1 | _ | |y 2025 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2024-12-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2024-12-27 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-27 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b J MATER CHEM C : 2022 |d 2024-12-27 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2024-12-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-27 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J MATER CHEM C : 2022 |d 2024-12-27 |
915 | _ | _ | |a National-Konsortium |0 StatID:(DE-HGF)0430 |2 StatID |d 2024-12-27 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-27 |
920 | 1 | _ | |0 I:(DE-H253)HAS-User-20120731 |k DOOR ; HAS-User |l DOOR-User |x 0 |
920 | 1 | _ | |0 I:(DE-H253)FS-PETRA-S-20210408 |k FS-PETRA-S |l PETRA-S |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-H253)HAS-User-20120731 |
980 | _ | _ | |a I:(DE-H253)FS-PETRA-S-20210408 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|