001     630593
005     20250702211400.0
024 7 _ |a urn:nbn:de:gbv:18-ediss-128363
|2 URN
024 7 _ |a 10.3204/PUBDB-2025-01873
|2 datacite_doi
037 _ _ |a PUBDB-2025-01873
041 _ _ |a English
100 1 _ |a Stehr, Felix Paul Georg
|0 P:(DE-H253)PIP1085264
|b 0
|e Corresponding author
|g male
245 _ _ |a Towards Spin-Polarized Electron Beams from a Laser-Plasma Accelerator
|f 2020-12-01 - 2025-05-19
260 _ _ |a Hamburg
|c 2025
|b Staats- und Universitätsbibliothek Hamburg Carl von Ossietzky
300 _ _ |a 227
336 7 _ |a Output Types/Dissertation
|2 DataCite
336 7 _ |a DISSERTATION
|2 ORCID
336 7 _ |a PHDTHESIS
|2 BibTeX
336 7 _ |a Thesis
|0 2
|2 EndNote
336 7 _ |a Dissertation / PhD Thesis
|b phd
|m phd
|0 PUB:(DE-HGF)11
|s 1751450053_523168
|2 PUB:(DE-HGF)
336 7 _ |a doctoralThesis
|2 DRIVER
502 _ _ |a Dissertation, University of Hamburg, 2025
|c University of Hamburg
|b Dissertation
|d 2025
|o 2025-05-19
520 _ _ |a The LEAP (Laser Electron Acceleration with Polarization) project at DESY is a proof-of-principle experiment aiming to demonstrate the generation -- thus also the transport -- of spin-polarized electron beams from a laser-plasma accelerator (LPA). This is expected to be achieved using a pre-polarized plasma source, generated via the photodissociation of HCl molecules with an ultraviolet (UV) dissociation laser. Compton transmission polarimetry is envisioned for polarization measurements, inferring electron polarization from the transmission asymmetry of bremsstrahlung photons through magnetized iron. This thesis explores three key aspects of LEAP, focusing on development an experimental realization. First, a feasibility study was conducted to generate the UV dissociation laser via cascaded second-harmonic generation in two beta-barium borate crystals directly from the LPA driver laser. A measured conversion efficiency of $\eta_{\omega \rightarrow 4\omega}\approx0.8\,\%$ into the UV demonstrates the feasibility of this approach. Second, a homogeneous Cherenkov lead-glass calorimeter was built as an integral part of the LEAP Compton transmission polarimeter. Furthermore, it was tested and calibrated with single electrons at the DESYII Test Beam Facility. The derived calorimeter energy resolution of $\frac{\sigma_{E}}{\langle E \rangle} < 2\,\%$ at TeV-scale total energies meets the requirement for its application within the LEAP polarimeter. GEANT4 simulations indicate a nonlinear calorimeter response to low-energy particles ($<10\,$MeV). The uncertainty of this response introduces a relative uncertainty of $\sim1.5\,\%$ on the simulated analyzing power of the polarimeter.Finally, the full polarimeter setup, consisting of a solenoid magnet and the Cherenkov calorimeter, was commissioned at the FLARE facility using an unpolarized LPA electron beam. Initial system tests, beam charge and energy characterization, and operational polarization measurements were conducted. Simulations determined the analyzing power of the system to be $A=11.74\pm0.18\,\%$ ($\frac{\Delta A}{A} = 1.6\,\%$) with the dominant uncertainty arising from the calorimeter response. The actual measurement was found to be primarily influenced by beam stability and control. In particular, observed asymmetries -- unrelated to beam polarization -- can be explained by potential energy drifts. Extrapolation to realistic polarization measurements indicates that shot-to-shot charge and energy stability must be provided at the $\leq 1\,\%$ level to enable reliable polarization measurements.
536 _ _ |a PHGS, VH-GS-500 - PIER Helmholtz Graduate School (2015_IFV-VH-GS-500)
|0 G:(DE-HGF)2015_IFV-VH-GS-500
|c 2015_IFV-VH-GS-500
|x 0
536 _ _ |a 622 - Detector Technologies and Systems (POF4-622)
|0 G:(DE-HGF)POF4-622
|c POF4-622
|f POF IV
|x 1
693 _ _ |0 EXP:(DE-H253)PLASMA-20250101
|5 EXP:(DE-H253)PLASMA-20250101
|e Plasma Accelerators
|x 0
693 _ _ |a DESY II
|f DESY: TestBeamline 24
|1 EXP:(DE-H253)DESYII-20150101
|0 EXP:(DE-H253)TestBeamline24-20150101
|6 EXP:(DE-H253)TestBeamline24-20150101
|x 1
700 1 _ |a List, Jenny
|0 P:(DE-H253)PIP1005630
|b 1
|e Thesis advisor
700 1 _ |a Moortgat-Pick, Gudrid
|0 P:(DE-H253)PIP1011115
|b 2
|e Thesis advisor
856 4 _ |u https://ediss.sub.uni-hamburg.de/handle/ediss/11686
856 4 _ |u https://bib-pubdb1.desy.de/record/630593/files/Dissertation_Felix_Stehr.pdf
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/630593/files/Dissertation_Felix_Stehr.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:bib-pubdb1.desy.de:630593
|p openaire
|p open_access
|p urn
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 0
|6 P:(DE-H253)PIP1085264
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 1
|6 P:(DE-H253)PIP1005630
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 2
|6 P:(DE-H253)PIP1011115
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Materie und Technologie
|1 G:(DE-HGF)POF4-620
|0 G:(DE-HGF)POF4-622
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Detector Technologies and Systems
|x 0
914 1 _ |y 2025
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
920 _ _ |l yes
920 1 _ |0 I:(DE-H253)FTX-20210408
|k FTX
|l Technol. zukünft. Teilchenph. Experim.
|x 0
920 1 _ |0 I:(DE-H253)MPA-20200816
|k MPA
|l Plasma Accelerators
|x 1
980 _ _ |a phd
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)FTX-20210408
980 _ _ |a I:(DE-H253)MPA-20200816
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21