000630593 001__ 630593
000630593 005__ 20250702211400.0
000630593 0247_ $$2URN$$aurn:nbn:de:gbv:18-ediss-128363
000630593 0247_ $$2datacite_doi$$a10.3204/PUBDB-2025-01873
000630593 037__ $$aPUBDB-2025-01873
000630593 041__ $$aEnglish
000630593 1001_ $$0P:(DE-H253)PIP1085264$$aStehr, Felix Paul Georg$$b0$$eCorresponding author$$gmale
000630593 245__ $$aTowards Spin-Polarized Electron Beams from a Laser-Plasma Accelerator$$f2020-12-01 - 2025-05-19
000630593 260__ $$aHamburg$$bStaats- und Universitätsbibliothek Hamburg Carl von Ossietzky$$c2025
000630593 300__ $$a227
000630593 3367_ $$2DataCite$$aOutput Types/Dissertation
000630593 3367_ $$2ORCID$$aDISSERTATION
000630593 3367_ $$2BibTeX$$aPHDTHESIS
000630593 3367_ $$02$$2EndNote$$aThesis
000630593 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1751450053_523168
000630593 3367_ $$2DRIVER$$adoctoralThesis
000630593 502__ $$aDissertation, University of Hamburg, 2025$$bDissertation$$cUniversity of Hamburg$$d2025$$o2025-05-19
000630593 520__ $$aThe LEAP (Laser Electron Acceleration with Polarization) project at DESY is a proof-of-principle experiment aiming to demonstrate the generation -- thus also the transport -- of spin-polarized electron beams from a laser-plasma accelerator (LPA). This is expected to be achieved using a pre-polarized plasma source, generated via the photodissociation of HCl molecules with an ultraviolet (UV) dissociation laser. Compton transmission polarimetry is envisioned for polarization measurements, inferring electron polarization from the transmission asymmetry of bremsstrahlung photons through magnetized iron. This thesis explores three key aspects of LEAP, focusing on development an experimental realization. First, a feasibility study was conducted to generate the UV dissociation laser via cascaded second-harmonic generation in two beta-barium borate crystals directly from the LPA driver laser. A measured conversion efficiency of $\eta_{\omega \rightarrow 4\omega}\approx0.8\,\%$ into the UV demonstrates the feasibility of this approach. Second, a homogeneous Cherenkov lead-glass calorimeter was built as an integral part of the LEAP Compton transmission polarimeter. Furthermore, it was tested and calibrated with single electrons at the DESYII Test Beam Facility. The derived calorimeter energy resolution of $\frac{\sigma_{E}}{\langle E \rangle} < 2\,\%$ at TeV-scale total energies meets the requirement for its application within the LEAP polarimeter. GEANT4  simulations indicate a nonlinear calorimeter response to low-energy particles ($<10\,$MeV). The uncertainty of this response introduces a relative uncertainty of  $\sim1.5\,\%$ on the simulated analyzing power of the polarimeter.Finally, the full polarimeter setup, consisting of a solenoid magnet and the Cherenkov calorimeter, was commissioned at the FLARE facility using an unpolarized LPA electron beam. Initial system tests, beam charge and energy characterization, and operational polarization measurements were conducted. Simulations determined the analyzing power of the system to be $A=11.74\pm0.18\,\%$ ($\frac{\Delta A}{A} = 1.6\,\%$) with the dominant uncertainty arising from the calorimeter response. The actual measurement was found to be primarily influenced by beam stability and control. In particular, observed asymmetries -- unrelated to beam polarization -- can be explained by potential energy drifts. Extrapolation to realistic polarization measurements indicates that shot-to-shot charge and energy stability must be provided at the $\leq 1\,\%$ level to enable reliable polarization measurements.
000630593 536__ $$0G:(DE-HGF)2015_IFV-VH-GS-500$$aPHGS, VH-GS-500 - PIER Helmholtz Graduate School (2015_IFV-VH-GS-500)$$c2015_IFV-VH-GS-500$$x0
000630593 536__ $$0G:(DE-HGF)POF4-622$$a622 - Detector Technologies and Systems (POF4-622)$$cPOF4-622$$fPOF IV$$x1
000630593 693__ $$0EXP:(DE-H253)PLASMA-20250101$$5EXP:(DE-H253)PLASMA-20250101$$ePlasma Accelerators$$x0
000630593 693__ $$0EXP:(DE-H253)TestBeamline24-20150101$$1EXP:(DE-H253)DESYII-20150101$$6EXP:(DE-H253)TestBeamline24-20150101$$aDESY II$$fDESY: TestBeamline 24$$x1
000630593 7001_ $$0P:(DE-H253)PIP1005630$$aList, Jenny$$b1$$eThesis advisor
000630593 7001_ $$0P:(DE-H253)PIP1011115$$aMoortgat-Pick, Gudrid$$b2$$eThesis advisor
000630593 8564_ $$uhttps://ediss.sub.uni-hamburg.de/handle/ediss/11686
000630593 8564_ $$uhttps://bib-pubdb1.desy.de/record/630593/files/Dissertation_Felix_Stehr.pdf$$yOpenAccess
000630593 8564_ $$uhttps://bib-pubdb1.desy.de/record/630593/files/Dissertation_Felix_Stehr.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000630593 909CO $$ooai:bib-pubdb1.desy.de:630593$$popenaire$$popen_access$$purn$$pdriver$$pVDB$$pdnbdelivery
000630593 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1085264$$aDeutsches Elektronen-Synchrotron$$b0$$kDESY
000630593 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1005630$$aDeutsches Elektronen-Synchrotron$$b1$$kDESY
000630593 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1011115$$aDeutsches Elektronen-Synchrotron$$b2$$kDESY
000630593 9131_ $$0G:(DE-HGF)POF4-622$$1G:(DE-HGF)POF4-620$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMaterie und Technologie$$vDetector Technologies and Systems$$x0
000630593 9141_ $$y2025
000630593 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000630593 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000630593 920__ $$lyes
000630593 9201_ $$0I:(DE-H253)FTX-20210408$$kFTX$$lTechnol. zukünft. Teilchenph. Experim.$$x0
000630593 9201_ $$0I:(DE-H253)MPA-20200816$$kMPA$$lPlasma Accelerators$$x1
000630593 980__ $$aphd
000630593 980__ $$aVDB
000630593 980__ $$aUNRESTRICTED
000630593 980__ $$aI:(DE-H253)FTX-20210408
000630593 980__ $$aI:(DE-H253)MPA-20200816
000630593 9801_ $$aFullTexts