| Home > Publications database > Transient Simulations of MAPS using TCAD, Allpix Squared & SPICE > print |
| 001 | 630159 | ||
| 005 | 20251119161743.0 | ||
| 024 | 7 | _ | |a 10.1016/j.nima.2025.170749 |2 doi |
| 024 | 7 | _ | |a 0167-5087 |2 ISSN |
| 024 | 7 | _ | |a 0168-9002 |2 ISSN |
| 024 | 7 | _ | |a 1872-9576 |2 ISSN |
| 024 | 7 | _ | |a 1872-9606 |2 ISSN |
| 024 | 7 | _ | |a 10.3204/PUBDB-2025-01864 |2 datacite_doi |
| 024 | 7 | _ | |a openalex:W4412425846 |2 openalex |
| 037 | _ | _ | |a PUBDB-2025-01864 |
| 041 | _ | _ | |a English |
| 082 | _ | _ | |a 530 |
| 100 | 1 | _ | |a Mendes, Larissa |0 P:(DE-H253)PIP1097577 |b 0 |e Corresponding author |
| 111 | 2 | _ | |a Vienna Conference on Instrumentation 2025 |c Vienna |d 2025-02-17 - 2025-02-21 |w Austria |
| 245 | _ | _ | |a Transient Simulations of MAPS using TCAD, Allpix Squared & SPICE |
| 260 | _ | _ | |a Amsterdam |c 2025 |b Elsevier |
| 300 | _ | _ | |a 5 |
| 336 | 7 | _ | |a CONFERENCE_PAPER |2 ORCID |
| 336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
| 336 | 7 | _ | |a Journal Article |0 PUB:(DE-HGF)16 |2 PUB:(DE-HGF) |m journal |
| 336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
| 336 | 7 | _ | |a conferenceObject |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Conference Paper |2 DataCite |
| 336 | 7 | _ | |a Contribution to a conference proceedings |b contrib |m contrib |0 PUB:(DE-HGF)8 |s 1762772154_3263424 |2 PUB:(DE-HGF) |
| 520 | _ | _ | |a Monolithic Active Pixel Sensors (MAPS) designed in a 65 nm CMOS imaging technology are an alternative to hybrid pixel sensors as they eliminate the demand for flip-chip bonding while reducing material budget through thinner active sensor layers. The TANGERINE project aims to create a 65 nm MAPS sensor with a small collection electrode for use in future lepton colliders and beam telescopes. This project encompasses the entire sensor R&D process, including electronics and design, simulations, prototype characterization, laboratory testing, and test beam measurements.Predicting the behavior of these sensors is challenging due to the intricate interaction between the doping regions in the small collection electrode design, which results in nonlinear electric fields. As a result, detailed simulations are critical for estimating sensor performance and directing design adjustments. The simulation strategy combines Monte Carlo simulations with electric field fields from Technology Computer-Aided Design (TCAD).Based on this approach, more detailed studies can be performed. This paper focuses on transient simulations to analyze sensor response over time, providing helpful information into charge collection dynamics and timing performance. |
| 536 | _ | _ | |a 622 - Detector Technologies and Systems (POF4-622) |0 G:(DE-HGF)POF4-622 |c POF4-622 |f POF IV |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de |
| 693 | _ | _ | |a DESY II |f DESY: TestBeamline 22 |1 EXP:(DE-H253)DESYII-20150101 |0 EXP:(DE-H253)TestBeamline22-20150101 |6 EXP:(DE-H253)TestBeamline22-20150101 |x 0 |
| 700 | 1 | _ | |a Dannheim, Dominik |0 P:(DE-H253)PIP1087629 |b 1 |
| 700 | 1 | _ | |a Dort, Katharina |0 P:(DE-H253)PIP1083579 |b 2 |
| 700 | 1 | _ | |a Eckstein, Doris |0 P:(DE-H253)PIP1006053 |b 3 |
| 700 | 1 | _ | |a King, Finn |0 P:(DE-H253)PIP1019720 |b 4 |
| 700 | 1 | _ | |a Gregor, Ingrid-Maria |0 P:(DE-H253)PIP1004563 |b 5 |
| 700 | 1 | _ | |a Huth, Lennart |0 P:(DE-H253)PIP1024990 |b 6 |
| 700 | 1 | _ | |a Lachnit, Stephan |0 P:(DE-H253)PIP1098944 |b 7 |
| 700 | 1 | _ | |a Rastorguev, Daniil |0 P:(DE-H253)PIP1099910 |b 8 |
| 700 | 1 | _ | |a Reckleben, Christian |0 P:(DE-H253)PIP1001714 |b 9 |
| 700 | 1 | _ | |a Ruiz Daza, Sara |0 P:(DE-H253)PIP1099054 |b 10 |
| 700 | 1 | _ | |a Schütze, Paul |0 P:(DE-H253)PIP1019945 |b 11 |
| 700 | 1 | _ | |a Snoeys, Walter |0 P:(DE-HGF)0 |b 12 |
| 700 | 1 | _ | |a Spannagel, Simon |0 P:(DE-H253)PIP1018940 |b 13 |
| 700 | 1 | _ | |a Stanitzki, Marcel |0 P:(DE-H253)PIP1014417 |b 14 |
| 700 | 1 | _ | |a Velyka, Anastasiia |0 P:(DE-H253)PIP1021838 |b 15 |
| 700 | 1 | _ | |a Vignola, Gianpiero |0 P:(DE-H253)PIP1099070 |b 16 |
| 700 | 1 | _ | |a Wennloef, Hakan Lennart Olov |0 P:(DE-H253)PIP1097675 |b 17 |
| 700 | 1 | _ | |a Del Rio Viera, Manuel Alejandro |0 P:(DE-H253)PIP1098663 |b 18 |
| 770 | _ | _ | |a Proceedings of the Vienna Conference on Instrumentation 2025 |z 0168-9002 |
| 773 | _ | _ | |a 10.1016/j.nima.2025.170749 |g Vol. 1080, p. 170749 - |0 PERI:(DE-600)1466532-3 |p 170749 |t Nuclear instruments & methods in physics research / Section A |v 1080 |y 2025 |x 0167-5087 |
| 856 | 4 | _ | |u https://www.sciencedirect.com/journal/nuclear-instruments-and-methods-in-physics-research-section-a-accelerators-spectrometers-detectors-and-associated-equipment |
| 856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/630159/files/HTML-Approval_of_scientific_publication.html |
| 856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/630159/files/PDF-Approval_of_scientific_publication.pdf |
| 856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/630159/files/Requests.pdf |
| 856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/630159/files/Requests.pdf?subformat=pdfa |x pdfa |
| 856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/630159/files/publisher-pdf.pdf |y OpenAccess |
| 856 | 4 | _ | |u https://bib-pubdb1.desy.de/record/630159/files/publisher-pdf.pdf?subformat=pdfa |x pdfa |y OpenAccess |
| 909 | C | O | |o oai:bib-pubdb1.desy.de:630159 |p openaire |p open_access |p OpenAPC_DEAL |p driver |p VDB |p openCost |p dnbdelivery |
| 910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 0 |6 P:(DE-H253)PIP1097577 |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 1 |6 P:(DE-H253)PIP1087629 |
| 910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 2 |6 P:(DE-H253)PIP1083579 |
| 910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 3 |6 P:(DE-H253)PIP1006053 |
| 910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 4 |6 P:(DE-H253)PIP1019720 |
| 910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 5 |6 P:(DE-H253)PIP1004563 |
| 910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 6 |6 P:(DE-H253)PIP1024990 |
| 910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 7 |6 P:(DE-H253)PIP1098944 |
| 910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 8 |6 P:(DE-H253)PIP1099910 |
| 910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 9 |6 P:(DE-H253)PIP1001714 |
| 910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 10 |6 P:(DE-H253)PIP1099054 |
| 910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 11 |6 P:(DE-H253)PIP1019945 |
| 910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 13 |6 P:(DE-H253)PIP1018940 |
| 910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 14 |6 P:(DE-H253)PIP1014417 |
| 910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 15 |6 P:(DE-H253)PIP1021838 |
| 910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 16 |6 P:(DE-H253)PIP1099070 |
| 910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 17 |6 P:(DE-H253)PIP1097675 |
| 910 | 1 | _ | |a Deutsches Elektronen-Synchrotron |0 I:(DE-588b)2008985-5 |k DESY |b 18 |6 P:(DE-H253)PIP1098663 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Materie und Technologie |1 G:(DE-HGF)POF4-620 |0 G:(DE-HGF)POF4-622 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Detector Technologies and Systems |x 0 |
| 914 | 1 | _ | |y 2025 |
| 915 | p | c | |a APC keys set |0 PC:(DE-HGF)0000 |2 APC |
| 915 | p | c | |a Local Funding |0 PC:(DE-HGF)0001 |2 APC |
| 915 | p | c | |a DEAL: Elsevier 09/01/2023 |0 PC:(DE-HGF)0125 |2 APC |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-11 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-11 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2024-12-11 |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-11 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-11 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2024-12-11 |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2024-12-11 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2024-12-11 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NUCL INSTRUM METH A : 2022 |d 2024-12-11 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2024-12-11 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-11 |
| 915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2024-12-11 |w ger |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-11 |
| 920 | 1 | _ | |0 I:(DE-H253)ATLAS-20120731 |k ATLAS |l LHC/ATLAS Experiment |x 0 |
| 980 | _ | _ | |a contrib |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a I:(DE-H253)ATLAS-20120731 |
| 980 | _ | _ | |a APC |
| 980 | 1 | _ | |a APC |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|