000629251 001__ 629251 000629251 005__ 20250715151526.0 000629251 0247_ $$2doi$$a10.1021/acsomega.5c01062 000629251 0247_ $$2datacite_doi$$a10.3204/PUBDB-2025-01779 000629251 0247_ $$2pmid$$a40415799 000629251 0247_ $$2WOS$$aWOS:001484231500001 000629251 0247_ $$2openalex$$aopenalex:W4410188657 000629251 037__ $$aPUBDB-2025-01779 000629251 041__ $$aEnglish 000629251 082__ $$a660 000629251 1001_ $$0P:(DE-H253)PIP1099262$$aBartosiewicz, Karol$$b0$$eCorresponding author 000629251 245__ $$aCorrelating Structural Disorder and Pr$^{3+}$ Emission Dynamics in Lu$_3$Al$_{2.5–x}$Sc$_x$Ga$_{2.5}$O$_{12}$ Crystals: A Comprehensive Structure–Property Investigation 000629251 260__ $$aWashington, DC$$bACS Publications$$c2025 000629251 3367_ $$2DRIVER$$aarticle 000629251 3367_ $$2DataCite$$aOutput Types/Journal article 000629251 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1749026889_3182565 000629251 3367_ $$2BibTeX$$aARTICLE 000629251 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000629251 3367_ $$00$$2EndNote$$aJournal Article 000629251 520__ $$aABSTRACT: This study explored the influence of Sc$^{3+}$ ions incorporation on the structural, vibrational, luminescent, and scintillation properties of Pr$^{3+}$-doped Lu$_3$(Al,Sc)$_{2.5–x}$Ga$_{2.5–x}$O$_{12}$ garnet crystals. Addressing the limited research on Sc-admixed and Pr$^{3+}$ doped garnet systems, this work successfully demonstrated the crystallization of garnet crystals from the melt, overcoming the substantial atomic mismatch between Sc and Al while preserving the thermodynamic stability of the garnet phase. Importantly, Sc-admixing enhanced atomic homogeneity and allowed for increased doping concentrations of Pr$^{3+}$ ions, which is crucial for tailoring the functional properties of advanced optical materials.The trap depths ranged from 1.63 eV (deep traps) to 0.22 eV (shallow traps) across all samples, with frequency factors predominantly between 1 × 10$^7$ and 1 × 10$^{11}$ s$^{−1}$, consistent with first-order thermoluminescent kinetics. From a materials design perspective, Sc$^{3+}$ ions substitution induced beneficial host lattice disorder, enhancing the emission intensity of 4f$^1$5d$_1$ $^1$ → 4f$^2$ interconfigurational and 4f$^2$ → 4f$^2$ intraconfigurational transitions. This effect highlighted the potential of Sc as a promising substituent for enhancing the luminescence intensity of rare earth elements.Synchrotron radiation experiments provided insights into the impact of Sc on band gap energy and energy transfer efficiency toward Pr$^{3+}$ ions offering new opportunities for engineering scintillators and phosphors with tunable optical properties. 000629251 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0 000629251 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x1 000629251 536__ $$0G:(DE-H253)I-20211463-EC$$aFS-Proposal: I-20211463 EC (I-20211463-EC)$$cI-20211463-EC$$x2 000629251 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de 000629251 693__ $$0EXP:(DE-H253)P-P66-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P66-20150101$$aPETRA III$$fPETRA Beamline P66$$x0 000629251 7001_ $$00000-0002-2384-3030$$aDewo, Wioletta$$b1 000629251 7001_ $$0P:(DE-H253)PIP1008124$$aNagirnyi, Vitali$$b2 000629251 7001_ $$00000-0002-0965-2676$$aRunka, Tomasz$$b3 000629251 7001_ $$0P:(DE-H253)PIP1007671$$aKirm, Marco$$b4 000629251 7001_ $$aHoriai, Takahiko$$b5 000629251 7001_ $$0P:(DE-H253)PIP1017632$$aSzymanski, Damian$$b6 000629251 7001_ $$aYamaji, Akihiro$$b7 000629251 7001_ $$aKurosawa, Shunsuke$$b8 000629251 7001_ $$aSocha, Paweł$$b9 000629251 7001_ $$0P:(DE-H253)PIP1008689$$aPejchal, Jan$$b10 000629251 7001_ $$0P:(DE-H253)PIP1008447$$aBabin, Vladimir$$b11 000629251 7001_ $$00000-0002-4519-6030$$aKral, Robert$$b12 000629251 7001_ $$0P:(DE-H253)PIP1007151$$aKotlov, Aleksei$$b13 000629251 7001_ $$aYoshikawa, Akira$$b14 000629251 7001_ $$0P:(DE-H253)PIP1010655$$aNikl, Martin$$b15 000629251 773__ $$0PERI:(DE-600)2861993-6$$a10.1021/acsomega.5c01062$$gVol. 10, no. 19, p. 19817 - 19831$$n19$$p19817 - 19831$$tACS omega$$v10$$x2470-1343$$y2025 000629251 8564_ $$uhttps://bib-pubdb1.desy.de/record/629251/files/bartosiewicz-et-al-2025-ACS.pdf$$yOpenAccess 000629251 8564_ $$uhttps://bib-pubdb1.desy.de/record/629251/files/bartosiewicz-et-al-2025-ACS.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000629251 909CO $$ooai:bib-pubdb1.desy.de:629251$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000629251 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1099262$$aExternal Institute$$b0$$kExtern 000629251 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1008124$$aExternal Institute$$b2$$kExtern 000629251 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1007671$$aExternal Institute$$b4$$kExtern 000629251 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1017632$$aExternal Institute$$b6$$kExtern 000629251 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1008689$$aExternal Institute$$b10$$kExtern 000629251 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1008447$$aExternal Institute$$b11$$kExtern 000629251 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1007151$$aDeutsches Elektronen-Synchrotron$$b13$$kDESY 000629251 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1010655$$aExternal Institute$$b15$$kExtern 000629251 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x0 000629251 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x1 000629251 9141_ $$y2025 000629251 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-07 000629251 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-07 000629251 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000629251 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS OMEGA : 2022$$d2025-01-07 000629251 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-11-13T17:04:20Z 000629251 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-11-13T17:04:20Z 000629251 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-07 000629251 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2025-01-07 000629251 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-07 000629251 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2025-01-07 000629251 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000629251 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-11-13T17:04:20Z 000629251 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2025-01-07 000629251 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2025-01-07 000629251 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-07 000629251 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-07 000629251 9201_ $$0I:(DE-H253)HAS-User-20120731$$kDOOR ; HAS-User$$lDOOR-User$$x0 000629251 9201_ $$0I:(DE-H253)FS-PET-S-20190712$$kFS-PET-S$$lExperimentebetreuung PETRA III$$x1 000629251 980__ $$ajournal 000629251 980__ $$aVDB 000629251 980__ $$aUNRESTRICTED 000629251 980__ $$aI:(DE-H253)HAS-User-20120731 000629251 980__ $$aI:(DE-H253)FS-PET-S-20190712 000629251 9801_ $$aFullTexts