TY  - JOUR
AU  - Prasoon, Anupam
AU  - Dacha, Preetam
AU  - Zhang, Heng
AU  - Unsal, Elif
AU  - Hambsch, Mike
AU  - Croy, Alexander
AU  - Fu, Shuai
AU  - Ngan Nguyen, Nguyen
AU  - Liu, Kejun
AU  - Qi, Haoyuan
AU  - Chung, Sein
AU  - Jeong, Minyoung
AU  - Gao, Lei
AU  - Kaiser, Ute
AU  - Cho, Kilwon
AU  - Wang, Hai I.
AU  - Dong, Renhao
AU  - Cuniberti, Gianaurelio
AU  - Bonn, Mischa
AU  - Mannsfeld, Stefan
AU  - Feng, Xinliang
TI  - High‐Performance Phototransistor Based on a 2D Polybenzimidazole Polymer
JO  - Advanced materials
VL  - 37
IS  - 33
SN  - 0935-9648
CY  - Weinheim
PB  - Wiley-VCH
M1  - PUBDB-2025-01777
SP  - 2505810
PY  - 2025
AB  - Photodetectors are fundamental components of modern optoelectronics, enabling the conversion of light into electrical signals. The development of high-performance phototransistors necessitates materials with both high charge carrier mobility and robust photoresponse. However, achieving both in a single material poses challenges due to inherent trade-offs. Herein, this study introduces a polybenzimidazole-(1,3-diazole)-based 2D polymer (2DPBI), synthesized as few-layer, crystalline films covering ≈28 cm2 on the water surface at room temperature, with large crystalline domain sizes ranging from 110 to 140 µm2. The 2DPBI incorporates a π-conjugated photoresponsive porphyrin motif through a 1,3-diazole linkage, exhibiting enhanced π-electron delocalization, a narrow direct band gap of ≈1.18 eV, a small reduced electron–hole effective mass (m* = 0.171 m0), and a very high resonant absorption coefficient of up to 106 cm−1. Terahertz spectroscopy reveals excellent short-range charge carrier mobility of ≈240 cm2 V−1 s−1. Temperature-dependent photoconductivity measurements and theoretical calculations confirm a band-like charge transport mechanism. Leveraging these features, 2DPBI-based phototransistors demonstrate an on/off ratio exceeding 108, photosensitivity of 1.08 × 107, response time of 1.1 ms, and detectivity of 2.0 × 1013 Jones, surpassing previously reported standalone few-layer 2D materials and are on par with silicon photodetectors. The unique characteristics of 2DPBI make it a promising foundation for future optoelectronic devices.
LB  - PUB:(DE-HGF)16
DO  - DOI:10.1002/adma.202505810
UR  - https://bib-pubdb1.desy.de/record/629249
ER  -