000629249 001__ 629249
000629249 005__ 20250828212828.0
000629249 0247_ $$2doi$$a10.1002/adma.202505810
000629249 0247_ $$2ISSN$$a0935-9648
000629249 0247_ $$2ISSN$$a1521-4095
000629249 0247_ $$2datacite_doi$$a10.3204/PUBDB-2025-01777
000629249 037__ $$aPUBDB-2025-01777
000629249 041__ $$aEnglish
000629249 082__ $$a660
000629249 1001_ $$00000-0003-1573-7008$$aPrasoon, Anupam$$b0
000629249 245__ $$aHigh‐Performance Phototransistor Based on a 2D Polybenzimidazole Polymer
000629249 260__ $$aWeinheim$$bWiley-VCH$$c2025
000629249 3367_ $$2DRIVER$$aarticle
000629249 3367_ $$2DataCite$$aOutput Types/Journal article
000629249 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1756377452_3942016
000629249 3367_ $$2BibTeX$$aARTICLE
000629249 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000629249 3367_ $$00$$2EndNote$$aJournal Article
000629249 520__ $$aPhotodetectors are fundamental components of modern optoelectronics, enabling the conversion of light into electrical signals. The development of high-performance phototransistors necessitates materials with both high charge carrier mobility and robust photoresponse. However, achieving both in a single material poses challenges due to inherent trade-offs. Herein, this study introduces a polybenzimidazole-(1,3-diazole)-based 2D polymer (2DPBI), synthesized as few-layer, crystalline films covering ≈28 cm2 on the water surface at room temperature, with large crystalline domain sizes ranging from 110 to 140 µm2. The 2DPBI incorporates a π-conjugated photoresponsive porphyrin motif through a 1,3-diazole linkage, exhibiting enhanced π-electron delocalization, a narrow direct band gap of ≈1.18 eV, a small reduced electron–hole effective mass (m* = 0.171 m0), and a very high resonant absorption coefficient of up to 106 cm−1. Terahertz spectroscopy reveals excellent short-range charge carrier mobility of ≈240 cm2 V−1 s−1. Temperature-dependent photoconductivity measurements and theoretical calculations confirm a band-like charge transport mechanism. Leveraging these features, 2DPBI-based phototransistors demonstrate an on/off ratio exceeding 108, photosensitivity of 1.08 × 107, response time of 1.1 ms, and detectivity of 2.0 × 1013 Jones, surpassing previously reported standalone few-layer 2D materials and are on par with silicon photodetectors. The unique characteristics of 2DPBI make it a promising foundation for future optoelectronic devices.
000629249 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x0
000629249 536__ $$0G:(DE-H253)I-20230095$$aFS-Proposal: I-20230095 (I-20230095)$$cI-20230095$$x1
000629249 536__ $$0G:(EU-Grant)852909$$aFC2DMOF - Development of Functional Conjugated Two-Dimensional Metal-Organic Frameworks (852909)$$c852909$$fERC-2019-STG$$x2
000629249 536__ $$0G:(EU-Grant)813036$$aULTIMATE - Bottom-Up generation of atomicalLy precise syntheTIc 2D MATerials for high performance in energy and Electronic applications – A multi-site innovative training action (813036)$$c813036$$fH2020-MSCA-ITN-2018$$x3
000629249 536__ $$0G:(GEPRIS)491865171$$aGRK 2861 - GRK 2861: Planare Kohlenstoffgitter (491865171)$$c491865171$$x4
000629249 588__ $$aDataset connected to DataCite
000629249 693__ $$0EXP:(DE-H253)P-P08-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P08-20150101$$aPETRA III$$fPETRA Beamline P08$$x0
000629249 7001_ $$0P:(DE-HGF)0$$aDacha, Preetam$$b1
000629249 7001_ $$0P:(DE-HGF)0$$aZhang, Heng$$b2
000629249 7001_ $$0P:(DE-HGF)0$$aUnsal, Elif$$b3
000629249 7001_ $$0P:(DE-H253)PIP1081764$$aHambsch, Mike$$b4
000629249 7001_ $$0P:(DE-HGF)0$$aCroy, Alexander$$b5
000629249 7001_ $$0P:(DE-HGF)0$$aFu, Shuai$$b6
000629249 7001_ $$0P:(DE-HGF)0$$aNgan Nguyen, Nguyen$$b7
000629249 7001_ $$0P:(DE-H253)PIP1017772$$aLiu, Kejun$$b8
000629249 7001_ $$0P:(DE-H253)PIP1102170$$aQi, Haoyuan$$b9
000629249 7001_ $$0P:(DE-HGF)0$$aChung, Sein$$b10
000629249 7001_ $$0P:(DE-HGF)0$$aJeong, Minyoung$$b11
000629249 7001_ $$0P:(DE-HGF)0$$aGao, Lei$$b12
000629249 7001_ $$0P:(DE-HGF)0$$aKaiser, Ute$$b13
000629249 7001_ $$0P:(DE-HGF)0$$aCho, Kilwon$$b14
000629249 7001_ $$0P:(DE-HGF)0$$aWang, Hai I.$$b15
000629249 7001_ $$0P:(DE-HGF)0$$aDong, Renhao$$b16
000629249 7001_ $$0P:(DE-HGF)0$$aCuniberti, Gianaurelio$$b17$$eCorresponding author
000629249 7001_ $$0P:(DE-HGF)0$$aBonn, Mischa$$b18$$eCorresponding author
000629249 7001_ $$0P:(DE-H253)PIP1029114$$aMannsfeld, Stefan$$b19$$eCorresponding author
000629249 7001_ $$0P:(DE-H253)PIP1081776$$aFeng, Xinliang$$b20$$eCorresponding author
000629249 773__ $$0PERI:(DE-600)1474949-X$$a10.1002/adma.202505810$$gp. 2505810$$n33$$p2505810$$tAdvanced materials$$v37$$x0935-9648$$y2025
000629249 8564_ $$uhttps://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202505810
000629249 8564_ $$uhttps://bib-pubdb1.desy.de/record/629249/files/Advanced%20Materials%20-%202025%20-%20Prasoon%20-%20High%E2%80%90Performance%20Phototransistor%20Based%20on%20a%202D%20Polybenzimidazole%20Polymer.pdf$$yOpenAccess
000629249 8564_ $$uhttps://bib-pubdb1.desy.de/record/629249/files/Advanced%20Materials%20-%202025%20-%20Prasoon%20-%20High%E2%80%90Performance%20Phototransistor%20Based%20on%20a%202D%20Polybenzimidazole%20Polymer.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000629249 909CO $$ooai:bib-pubdb1.desy.de:629249$$popenaire$$popen_access$$pdriver$$pVDB$$pec_fundedresources$$pdnbdelivery
000629249 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1081764$$aExternal Institute$$b4$$kExtern
000629249 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1017772$$aExternal Institute$$b8$$kExtern
000629249 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1102170$$aExternal Institute$$b9$$kExtern
000629249 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1029114$$aExternal Institute$$b19$$kExtern
000629249 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1081776$$aExternal Institute$$b20$$kExtern
000629249 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x0
000629249 9141_ $$y2025
000629249 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-13
000629249 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-13
000629249 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-13
000629249 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000629249 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV MATER : 2022$$d2024-12-13
000629249 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2024-12-13$$wger
000629249 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-13
000629249 915__ $$0StatID:(DE-HGF)9925$$2StatID$$aIF >= 25$$bADV MATER : 2022$$d2024-12-13
000629249 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-13
000629249 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000629249 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-13
000629249 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-13
000629249 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-13$$wger
000629249 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-13
000629249 9201_ $$0I:(DE-H253)FS_DOOR-User-20241023$$kFS DOOR-User$$lFS DOOR-User$$x0
000629249 980__ $$ajournal
000629249 980__ $$aVDB
000629249 980__ $$aUNRESTRICTED
000629249 980__ $$aI:(DE-H253)FS_DOOR-User-20241023
000629249 9801_ $$aFullTexts