000628962 001__ 628962
000628962 005__ 20250923141012.0
000628962 0247_ $$2doi$$a10.18429/JACoW-IPAC25-TUPM031
000628962 037__ $$aPUBDB-2025-01765
000628962 041__ $$aEnglish
000628962 1001_ $$0P:(DE-H253)PIP1102398$$aPeetermans, Karel Camille A$$b0$$eCorresponding author$$udesy
000628962 1112_ $$a16th International Particle Accelerator Conference$$cTaipei$$d2025-06-02 - 2025-06-06$$gIPAC'25$$wTaiwan
000628962 245__ $$aCourant-Snyder formalism for modeling, optimizing and simulating broadband THz radiation transport
000628962 260__ $$c2025
000628962 300__ $$a1231-1234
000628962 3367_ $$2ORCID$$aCONFERENCE_PAPER
000628962 3367_ $$033$$2EndNote$$aConference Paper
000628962 3367_ $$2BibTeX$$aINPROCEEDINGS
000628962 3367_ $$2DRIVER$$aconferenceObject
000628962 3367_ $$2DataCite$$aOutput Types/Conference Paper
000628962 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1758629315_4079329
000628962 520__ $$aIn order to exploit the scientific potential of user-oriented accelerator facilities, it is necessary to provide adequate pump sources to enable pump-probe science. The EuXFEL R&D project, STERN, aims to equip X-ray users with an accelerator-based THz source matching the high repetition rate of the XFEL. The proposed THz radiation generation methods involve Cherenkov wakefield structures and diffraction radiation, aiming to produce a spectrum from $300 \ \mathrm{GHz}$ to $ 30 \ \mathrm{THz}$. To enable experimental characterization, both broadband and narrowband pulses must be transported through a single beamline to a radiation-shielded laboratory. A major challenge has been the simulation, optimization and design of the STERN beamline. The OCELOT accelerator lattice optimizer is adapted for optical transport with mirrors substituting traditional focusing magnets. The performance is corroborated using a THz transport code that considers beam clipping and diffraction. The optimized beamline achieves efficient transport over 10 meters, maintaining over 70% source-to-end efficiency across $1-30\ \mathrm{THz}$.
000628962 536__ $$0G:(DE-HGF)POF4-6G13$$a6G13 - Accelerator of European XFEL (POF4-6G13)$$cPOF4-6G13$$fPOF IV$$x0
000628962 536__ $$0G:(DE-HGF)POF4-621$$a621 - Accelerator Research and Development (POF4-621)$$cPOF4-621$$fPOF IV$$x1
000628962 588__ $$aDataset connected to DataCite
000628962 693__ $$0EXP:(DE-H253)XFEL(machine)-20150101$$1EXP:(DE-H253)XFEL-20150101$$5EXP:(DE-H253)XFEL(machine)-20150101$$aXFEL$$eFacility (machine) XFEL$$x0
000628962 7001_ $$0P:(DE-H253)PIP1002625$$aFloettmann, Klaus$$b1$$udesy
000628962 7001_ $$0P:(DE-H253)PIP1026175$$aLemery, Francois$$b2$$udesy
000628962 7001_ $$0P:(DE-H253)PIP1092245$$aAmorim Goncalves Giesteira, Filipe$$b3$$udesy
000628962 7001_ $$0P:(DE-H253)PIP1023610$$aMüller, Lukas$$b4$$udesy
000628962 7001_ $$0P:(DE-H253)PIP1001293$$aWohlenberg, Torsten$$b5$$udesy
000628962 7001_ $$0P:(DE-H253)PIP1108175$$aKalender, Vahit$$b6$$udesy
000628962 7001_ $$0P:(DE-H253)PIP1103698$$aWernsmann, Juna$$b7$$udesy
000628962 773__ $$a10.18429/JACoW-IPAC25-TUPM031
000628962 8564_ $$uhttps://bib-pubdb1.desy.de/record/628962/files/HTML-Approval_of_scientific_publication.html
000628962 8564_ $$uhttps://bib-pubdb1.desy.de/record/628962/files/PDF-Approval_of_scientific_publication.pdf
000628962 8564_ $$uhttps://bib-pubdb1.desy.de/record/628962/files/IPAC_25__Courant_Snyder_formalism_for_modeling__optimizing_and_simulating_broadband_THz_radiation_transport-Upload.pdf$$yRestricted
000628962 8564_ $$uhttps://bib-pubdb1.desy.de/record/628962/files/IPAC_25__Courant_Snyder_formalism_for_modeling__optimizing_and_simulating_broadband_THz_radiation_transport-Upload.pdf?subformat=pdfa$$xpdfa$$yRestricted
000628962 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1102398$$aDeutsches Elektronen-Synchrotron$$b0$$kDESY
000628962 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1002625$$aDeutsches Elektronen-Synchrotron$$b1$$kDESY
000628962 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1026175$$aDeutsches Elektronen-Synchrotron$$b2$$kDESY
000628962 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1092245$$aDeutsches Elektronen-Synchrotron$$b3$$kDESY
000628962 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1023610$$aDeutsches Elektronen-Synchrotron$$b4$$kDESY
000628962 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1001293$$aDeutsches Elektronen-Synchrotron$$b5$$kDESY
000628962 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1108175$$aDeutsches Elektronen-Synchrotron$$b6$$kDESY
000628962 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1103698$$aDeutsches Elektronen-Synchrotron$$b7$$kDESY
000628962 9131_ $$0G:(DE-HGF)POF4-6G13$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vAccelerator of European XFEL$$x0
000628962 9131_ $$0G:(DE-HGF)POF4-621$$1G:(DE-HGF)POF4-620$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMaterie und Technologie$$vAccelerator Research and Development$$x1
000628962 9141_ $$y2025
000628962 9201_ $$0I:(DE-H253)MPY-20120731$$kMPY$$lBeschleunigerphysik$$x0
000628962 9201_ $$0I:(DE-H253)MXL-20160301$$kMXL$$lKoordination des XFEL-Beschleunigers$$x1
000628962 980__ $$acontrib
000628962 980__ $$aEDITORS
000628962 980__ $$aVDBINPRINT
000628962 980__ $$aI:(DE-H253)MPY-20120731
000628962 980__ $$aI:(DE-H253)MXL-20160301
000628962 980__ $$aUNRESTRICTED