001     628961
005     20250723105918.0
024 7 _ |a 10.1039/D5SC00167F
|2 doi
024 7 _ |a 2041-6520
|2 ISSN
024 7 _ |a 2041-6539
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2025-01764
|2 datacite_doi
024 7 _ |a altmetric:175941980
|2 altmetric
024 7 _ |a pmid:40255964
|2 pmid
024 7 _ |a WOS:001468661800001
|2 WOS
024 7 _ |a openalex:W4409207468
|2 openalex
037 _ _ |a PUBDB-2025-01764
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Stemer, Dominik
|0 P:(DE-H253)PIP1096040
|b 0
|e Corresponding author
245 _ _ |a Photoelectron circular dichroism of aqueous-phase alanine
260 _ _ |a Cambridge
|c 2025
|b RSC
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1748942184_2131115
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Amino acids and other small chiral molecules play key roles in biochemistry. However, in order to understand how these molecules behave in vivo, it is necessary to study them under aqueous-phase conditions. Photoelectron circular dichroism (PECD) has emerged as an extremely sensitive probe of chiral molecules, but its suitability for application to aqueous solutions had not yet been proven. Here, we report on our PECD measurements of aqueous-phase alanine, the simplest chiral amino acid. We demonstrate that the PECD response of alanine in water is different for each of alanine's carbon atoms, and is sensitive to molecular structure changes (protonation states) related to the solution pH. For C 1s photoionization of alanine's carboxylic acid group, we report PECD of comparable magnitude to that observed in valence-band photoelectron spectroscopy of gas-phase alanine. We identify key differences between PECD experiments from liquids and gases, discuss how PECD may provide information regarding solution-specific phenomena — for example the nature and chirality of the solvation shell surrounding chiral molecules in water — and highlight liquid-phase PECD as a powerful new tool for the study of aqueous-phase chiral molecules of biological relevance.
536 _ _ |a 631 - Matter – Dynamics, Mechanisms and Control (POF4-631)
|0 G:(DE-HGF)POF4-631
|c POF4-631
|f POF IV
|x 0
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 1
536 _ _ |a DFG project G:(GEPRIS)509471550 - Dynamik photoionisations-induzierter Prozesse in laser-präparierten Molekülen in der Gasphase und der wässrigen Phase (509471550)
|0 G:(GEPRIS)509471550
|c 509471550
|x 2
536 _ _ |a AQUACHIRAL - Chiral aqueous-phase chemistry (883759)
|0 G:(EU-Grant)883759
|c 883759
|f ERC-2019-ADG
|x 3
536 _ _ |a FS-Proposal: II-20180012 (II-20180012)
|0 G:(DE-H253)II-20180012
|c II-20180012
|x 4
536 _ _ |a FS-Proposal: I-20200682 (I-20200682)
|0 G:(DE-H253)I-20200682
|c I-20200682
|x 5
536 _ _ |a FS-Proposal: I-20211126 (I-20211126)
|0 G:(DE-H253)I-20211126
|c I-20211126
|x 6
536 _ _ |a FS-Proposal: I-20230378 (I-20230378)
|0 G:(DE-H253)I-20230378
|c I-20230378
|x 7
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P04
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P04-20150101
|6 EXP:(DE-H253)P-P04-20150101
|x 0
700 1 _ |a Thuermer, Stephan
|0 P:(DE-H253)PIP1086906
|b 1
|e Corresponding author
700 1 _ |a Trinter, Florian
|0 P:(DE-H253)PIP1017364
|b 2
700 1 _ |a Hergenhahn, Uwe
|0 P:(DE-H253)PIP1008114
|b 3
700 1 _ |a Pugini, Michele
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Credidio, Bruno
|0 P:(DE-H253)PIP1103840
|b 5
700 1 _ |a Malerz, Sebastian
|0 P:(DE-H253)PIP1086917
|b 6
700 1 _ |a Wilkinson, Iain
|0 P:(DE-H253)PIP1086922
|b 7
700 1 _ |a Nahon, Laurent
|0 P:(DE-H253)PIP1086983
|b 8
700 1 _ |a Meijer, Gerard
|0 P:(DE-H253)PIP1010420
|b 9
700 1 _ |a Powis, Ivan
|0 P:(DE-H253)PIP1086918
|b 10
700 1 _ |a Winter, Bernd
|0 P:(DE-H253)PIP1023483
|b 11
|e Corresponding author
773 _ _ |a 10.1039/D5SC00167F
|g Vol. 16, no. 20, p. 8637 - 8647
|0 PERI:(DE-600)2559110-1
|n 20
|p 8637 - 8647
|t Chemical science
|v 16
|y 2025
|x 2041-6520
856 4 _ |u https://pubs.rsc.org/en/content/articlelanding/2025/sc/d5sc00167f
856 4 _ |u https://bib-pubdb1.desy.de/record/628961/files/Stemer_ChemSci_2025.pdf
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/628961/files/Stemer_ChemSci_2025.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:bib-pubdb1.desy.de:628961
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1096040
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-H253)PIP1086906
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 2
|6 P:(DE-H253)PIP1017364
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-H253)PIP1017364
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-H253)PIP1008114
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-H253)PIP1103840
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 P:(DE-H253)PIP1086917
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 7
|6 P:(DE-H253)PIP1086922
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 8
|6 P:(DE-H253)PIP1086983
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 9
|6 P:(DE-H253)PIP1010420
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 10
|6 P:(DE-H253)PIP1086918
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 11
|6 P:(DE-H253)PIP1023483
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-631
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Matter – Dynamics, Mechanisms and Control
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 1
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-13
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-13
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CHEM SCI : 2022
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-07-23T09:28:57Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1210
|2 StatID
|b Index Chemicus
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-07-23T09:28:57Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-13
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-07-23T09:28:57Z
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CHEM SCI : 2022
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1200
|2 StatID
|b Chemical Reactions
|d 2024-12-13
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2024-12-13
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-13
920 1 _ |0 I:(DE-H253)HAS-User-20120731
|k DOOR ; HAS-User
|l DOOR-User
|x 0
920 1 _ |0 I:(DE-H253)FS-PETRA-S-20210408
|k FS-PETRA-S
|l PETRA-S
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)HAS-User-20120731
980 _ _ |a I:(DE-H253)FS-PETRA-S-20210408
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21