000628058 001__ 628058
000628058 005__ 20250527210442.0
000628058 0247_ $$2datacite_doi$$a10.3204/PUBDB-2025-01709
000628058 037__ $$aPUBDB-2025-01709
000628058 041__ $$aEnglish
000628058 088__ $$2DESY$$aDESY-THESIS-2025-010
000628058 1001_ $$0P:(DE-H253)PIP1103491$$aMansi, Lorenzo$$b0$$eCorresponding author$$gmale$$udesy
000628058 245__ $$aThe Higgs Branch of Six Dimensional Supersymmetric Theories: Magnetic Quivers, Geometry, and Hasse Diagrams$$f2022-10-04 - 2025-07-03
000628058 260__ $$aHamburg$$bVerlag Deutsches Elektronen-Synchrotron DESY$$c2025
000628058 300__ $$a217
000628058 3367_ $$2DataCite$$aOutput Types/Dissertation
000628058 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$mbook
000628058 3367_ $$2ORCID$$aDISSERTATION
000628058 3367_ $$2BibTeX$$aPHDTHESIS
000628058 3367_ $$02$$2EndNote$$aThesis
000628058 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1748337674_494491
000628058 3367_ $$2DRIVER$$adoctoralThesis
000628058 4900_ $$aDESY-THESIS
000628058 502__ $$aDissertation, Universität Hamburg, 2025$$bDissertation$$cUniversität Hamburg$$d2025$$o2025-07-03
000628058 520__ $$aIn this thesis, we report recent advancements in the understanding of Higgs branch moduli spacesof six-dimensional (1,0) supersymmetric quantum field theories, along with related developments.These progresses have been achieved by exploiting the interplay between geometrical engineeringand techniques in quiver gauge theories, leading to new insights into the Higgs mechanism’s actionin higher-dimensional supersymmetric theories.Paper I: We present an extension of the magnetic quiver technique to a class of non-gravitationalsupersymmetric quantum field theories in six dimensions known as Little String Theories (LSTs).These theories also exhibit a higher-group symmetry structure. Notably, we prove a monotonicitytheorem describing the evolution of κR, a quantity characterizing the higher group symmetry, underpartial Higgsing patterns.Paper II: Specializing to a brane engineering framework, we construct a family of LST modelswith a natural interpretation as an F-theory compactification. We derive the magnetic quiver forits Higgs branch moduli space and study the partial Higgsing pattern using the quiver subtractiontechnique. By leveraging the alternative description of Higgsing as a complex structure deformationwithin the F-theory geometric realization, we establish for the first time a concrete link betweengeometric approaches and algorithm-based predictions from quiver gauge theories.Paper III: Building upon the geometric connections established in the previous paper, we considera class of six-dimensional Super Conformal Field Theories (SCFTs) engineered through F-theorycompactifications and analyze their partial Higgsing patterns. Additionally, we provide a braneconstruction in Type IIA featuring an exotic orbifold for this class, from which we extract themagnetic quiver. We then propose a tentative, case-specific quiver algorithm that successfully eproduces the geometric results.Paper IV: We formalize a quiver algorithm designed to predict the partial Higgsing patterns onthe Coulomb branch of three-dimensional N= 4 quiver gauge theories with special orthogonal andsymplectic gauge groups. The algorithm is benchmarked against predictions derived from geometricconsiderations in the context of Class S theories and F-theory engineering of six-dimensional SCFTs.
000628058 536__ $$0G:(DE-HGF)POF4-611$$a611 - Fundamental Particles and Forces (POF4-611)$$cPOF4-611$$fPOF IV$$x0
000628058 536__ $$0G:(GEPRIS)390833306$$aDFG project G:(GEPRIS)390833306 - EXC 2121: Quantum Universe (390833306)$$c390833306$$x1
000628058 536__ $$0G:(GEPRIS)506632645$$aDFG project G:(GEPRIS)506632645 - SFB 1624: Höhere Strukturen, Modulräume und Integrabilität (506632645)$$c506632645$$x2
000628058 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000628058 7001_ $$0P:(DE-H253)PIP1098591$$aLawrie, Craig$$b1$$eThesis advisor$$udesy
000628058 8564_ $$uhttps://bib-pubdb1.desy.de/record/628058/files/Lorenzo_Mansi_PhD_Dissertation.pdf$$yOpenAccess
000628058 8564_ $$uhttps://bib-pubdb1.desy.de/record/628058/files/desy-thesis-25-010.title.pdf$$yOpenAccess
000628058 8564_ $$uhttps://bib-pubdb1.desy.de/record/628058/files/Lorenzo_Mansi_PhD_Dissertation.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000628058 8564_ $$uhttps://bib-pubdb1.desy.de/record/628058/files/desy-thesis-25-010.title.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000628058 909CO $$ooai:bib-pubdb1.desy.de:628058$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
000628058 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1103491$$aDeutsches Elektronen-Synchrotron$$b0$$kDESY
000628058 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1098591$$aDeutsches Elektronen-Synchrotron$$b1$$kDESY
000628058 9131_ $$0G:(DE-HGF)POF4-611$$1G:(DE-HGF)POF4-610$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMatter and the Universe$$vFundamental Particles and Forces$$x0
000628058 9141_ $$y2025
000628058 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000628058 920__ $$lyes
000628058 9201_ $$0I:(DE-H253)T-20120731$$kT$$lTheorie-Gruppe$$x0
000628058 980__ $$aphd
000628058 980__ $$aVDB
000628058 980__ $$aUNRESTRICTED
000628058 980__ $$abook
000628058 980__ $$aI:(DE-H253)T-20120731
000628058 9801_ $$aFullTexts