001     627945
005     20250519183529.0
024 7 _ |a 10.21468/SciPostPhysCore.8.1.021
|2 doi
037 _ _ |a PUBDB-2025-01693
100 1 _ |a Wolf, Moritz
|0 P:(DE-H253)PIP1028713
|b 0
245 _ _ |a Fast Perfekt: Regression-based refinement of fast simulation
260 _ _ |a Amsterdam
|c 2025
|b SciPost Foundation
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1747633602_396519
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The availability of precise and accurate simulation is a limiting factor for interpreting and forecasting data in many fields of science and engineering. Often, one or more distinct simulation software applications are developed, each with a relative advantage in accuracy or speed. The quality of insights extracted from the data stands to increase if the accuracy of faster, more economical simulation could be improved to parity or near parity with more resource-intensive but accurate simulation. We present Fast Perfekt, a machine-learned regression to refine the output of fast simulation that employs residual neural networks. A deterministic morphing model is trained using a unique schedule that makes use of the ensemble loss function MMD, with the option of an additional pair-based loss function such as the MSE. We explore this methodology in the context of an abstract analytical model and in terms of a realistic particle physics application featuring jet properties in hadron collisions at the CERN Large Hadron Collider. The refinement makes maximum use of existing domain knowledge, and introduces minimal computational overhead to production.
536 _ _ |a HIDSS-0002 - DASHH: Data Science in Hamburg - Helmholtz Graduate School for the Structure of Matter (2019_IVF-HIDSS-0002)
|0 G:(DE-HGF)2019_IVF-HIDSS-0002
|c 2019_IVF-HIDSS-0002
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
700 1 _ |a Stietz, Lars Olaf
|0 P:(DE-H253)PIP1105565
|b 1
700 1 _ |a Connor, Patrick
|0 P:(DE-H253)PIP1023675
|b 2
700 1 _ |a Schleper, Peter
|0 P:(DE-H253)PIP1004211
|b 3
700 1 _ |a Bein, Samuel
|0 P:(DE-H253)PIP1031825
|b 4
773 _ _ |a 10.21468/SciPostPhysCore.8.1.021
|g Vol. 8, no. 1, p. 021
|0 PERI:(DE-600)3071450-3
|n 1
|p 021
|t SciPost Physics Core
|v 8
|y 2025
|x 2666-9366
856 4 _ |u https://bib-pubdb1.desy.de/record/627945/files/SciPostPhysCore_8_1_021.pdf
|y Restricted
856 4 _ |u https://bib-pubdb1.desy.de/record/627945/files/SciPostPhysCore_8_1_021.pdf?subformat=pdfa
|x pdfa
|y Restricted
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1028713
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-H253)PIP1105565
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-H253)PIP1023675
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-H253)PIP1004211
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 P:(DE-H253)PIP1031825
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SCIPOST PHYSICS CORE : 2022
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2020-04-30T11:42:11Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2020-04-30T11:42:11Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Open peer review
|d 2020-04-30T11:42:11Z
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2020-04-30T11:42:11Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-01
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-01
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2025-01-01
980 1 _ |a EXTERN4COORD
980 _ _ |a journal
980 _ _ |a USER
980 _ _ |a I:(DE-H253)FS_DOOR-User-20241023
980 _ _ |a I:(DE-H253)DESY-20170408
980 _ _ |a I:(DE-H253)FS-TUX-20170422


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21