001     627911
005     20251203211338.0
024 7 _ |a 10.1103/kv2z-ps8h
|2 doi
024 7 _ |a 10.3204/PUBDB-2025-01686
|2 datacite_doi
037 _ _ |a PUBDB-2025-01686
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Mewes, Steven Mathis
|0 P:(DE-H253)PIP1083142
|b 0
|e Corresponding author
245 _ _ |a Characterization of discharge capillaries via benchmarked hydrodynamic plasma simulations
260 _ _ |a College Park, MD
|c 2025
|b APS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1764771137_3336032
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Plasma accelerators utilize strong electric fields in plasma waves to accelerate charged particles, making them a compact alternative to radiofrequency technologies. Discharge capillaries are plasma sources used in plasma accelerator research to provide acceleration targets, or as plasma lenses to capture or focus accelerated beams. They have applications for beam-driven and laser-driven plasma accelerators and can sustain high repetition rates for extended periods of time. Despite these advantages, high-fidelity simulations of discharge capillaries remain challenging due to the range of mechanisms involved and the difficulty to diagnose them in experiments. In this work, we utilize hydrodynamic plasma simulations to examine the discharge process of a plasma cell and discuss implications for future accelerator systems. The simulation model is validated with experimental measurements in a 50-mm-long, 1-mm-wide plasma capillary operating a 12–27 kV discharge at 200–1200 Pa hydrogen pressure. For 20 kV at 870 Pa, the discharge is shown to deposit 178 mJ of energy in the plasma. Potential difficulties with the common density measurement method using Hα emission spectroscopy are discussed. This simulation model enables investigations of repeatability, heat flow management, and fine tailoring of the plasma profile with discharges.
536 _ _ |a 621 - Accelerator Research and Development (POF4-621)
|0 G:(DE-HGF)POF4-621
|c POF4-621
|f POF IV
|x 0
536 _ _ |a DFG project G:(GEPRIS)491245950 - Open-Access-Publikationskosten / 2025-2027 / DESY Hamburg (491245950)
|0 G:(GEPRIS)491245950
|c 491245950
|x 1
536 _ _ |a PACRI - Plasma Accelerator systems for Compact Research Infrastructures (101188004)
|0 G:(EU-Grant)101188004
|c 101188004
|f HORIZON-INFRA-2024-TECH-01
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a FLASH
|e FLASHForward
|1 EXP:(DE-H253)FLASH-20150101
|0 EXP:(DE-H253)FLASHForward-20150101
|5 EXP:(DE-H253)FLASHForward-20150101
|x 0
700 1 _ |a Boyle, Gregory James
|0 P:(DE-H253)PIP1083196
|b 1
700 1 _ |a D'Arcy, Richard
|0 P:(DE-H253)PIP1027904
|b 2
700 1 _ |a Garland, Matthew James
|0 P:(DE-H253)PIP1084257
|b 3
700 1 _ |a Huck, Maryam
|0 P:(DE-H253)PIP1108247
|b 4
700 1 _ |a Jones, Harry
|0 P:(DE-H253)PIP1100996
|b 5
700 1 _ |a Loisch, Gregor
|0 P:(DE-H253)PIP1026627
|b 6
700 1 _ |a Maier, Andreas
|0 P:(DE-H253)PIP1014692
|b 7
700 1 _ |a Osterhoff, Jens
|0 P:(DE-H253)PIP1012785
|b 8
700 1 _ |a Parikh, Trupen
|0 P:(DE-H253)PIP1091505
|b 9
700 1 _ |a Wesch, Stephan
|0 P:(DE-H253)PIP1006306
|b 10
700 1 _ |a Wood, Jonathan Christopher
|0 P:(DE-H253)PIP1089935
|b 11
700 1 _ |a Thévenet, Maxence
|0 P:(DE-H253)PIP1093740
|b 12
773 _ _ |a 10.1103/kv2z-ps8h
|g Vol. 7, no. 4, p. 043193
|0 PERI:(DE-600)3004165-X
|n 4
|p 043193
|t Physical review research
|v 7
|y 2025
|x 2643-1564
856 4 _ |u https://doi.org/10.1103/kv2z-ps8h
856 4 _ |u https://bib-pubdb1.desy.de/record/627911/files/HTML-Approval_of_scientific_publication.html
856 4 _ |u https://bib-pubdb1.desy.de/record/627911/files/Invoice_INV_25_OCT_018455.pdf
856 4 _ |u https://bib-pubdb1.desy.de/record/627911/files/PDF-Approval_of_scientific_publication.pdf
856 4 _ |u https://bib-pubdb1.desy.de/record/627911/files/Invoice_INV_25_OCT_018455.pdf?subformat=pdfa
|x pdfa
856 4 _ |u https://bib-pubdb1.desy.de/record/627911/files/Mewes2025_CapillaryDischargeSimulation.pdf
|y OpenAccess
856 4 _ |u https://bib-pubdb1.desy.de/record/627911/files/Mewes2025_CapillaryDischargeSimulation.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:bib-pubdb1.desy.de:627911
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 0
|6 P:(DE-H253)PIP1083142
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-H253)PIP1083196
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-H253)PIP1027904
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 3
|6 P:(DE-H253)PIP1084257
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 4
|6 P:(DE-H253)PIP1108247
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-H253)PIP1100996
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 6
|6 P:(DE-H253)PIP1026627
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 P:(DE-H253)PIP1026627
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 7
|6 P:(DE-H253)PIP1014692
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 7
|6 P:(DE-H253)PIP1014692
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 8
|6 P:(DE-H253)PIP1012785
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 8
|6 P:(DE-H253)PIP1012785
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 9
|6 P:(DE-H253)PIP1091505
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 10
|6 P:(DE-H253)PIP1006306
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 11
|6 P:(DE-H253)PIP1089935
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 12
|6 P:(DE-H253)PIP1093740
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Materie und Technologie
|1 G:(DE-HGF)POF4-620
|0 G:(DE-HGF)POF4-621
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Accelerator Research and Development
|x 0
914 1 _ |y 2025
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 p c |a DOAJ Journal
|0 PC:(DE-HGF)0003
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-02
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-02-07T08:08:02Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-02-07T08:08:02Z
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-02
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-02-07T08:08:02Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-02
920 1 _ |0 I:(DE-H253)MPL-20120731
|k MPL
|l Plasma Acceleration and Laser Group
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)MPL-20120731
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21