001     627901
005     20250715151519.0
024 7 _ |a 10.1038/s41598-024-78259-9
|2 doi
024 7 _ |a 10.3204/PUBDB-2025-01676
|2 datacite_doi
024 7 _ |a 39979302
|2 pmid
024 7 _ |a WOS:001428038400045
|2 WOS
024 7 _ |2 openalex
|a openalex:W4407768072
037 _ _ |a PUBDB-2025-01676
041 _ _ |a English
082 _ _ |a 600
100 1 _ |a Chowdhury, Subhadip
|0 P:(DE-H253)PIP1102805
|b 0
245 _ _ |a Investigation on the formation of two dimensional perovskite nanostructures at the water surface through self initiated reaction
260 _ _ |a [London]
|c 2025
|b Springer Nature
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1748352134_588742
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a BMBF/05K16FK1/05K19FK2/ 05K21FK3 research grants for financing the LISA instrument
520 _ _ |a The emerging class of hybrid organic-inorganic perovskites (HOIPs) has exhibited fascinating properties for a wide range of technological applications. With halide ions, HOIPs have provided novel optoelectronic devices including efficient solar cells and with pseudohalide anions-like formate (HCOO$^−$), enigmatic electromagnetic properties have been obtained in HOIPs. Large-scale synthesis of such 2D HOIP films is of immense importance for the advancement of its application as solar materials. We have shown using in-situ X-ray measurements that the Langmuir monolayer of perovskite can be formed at the air-water interface by spreading stearic acid molecules on the water subphase having (C$_4$H$_9$NH$_3$)$_2$PbBr$_4$ molecules. The 2D lead formate perovskite films are formed at the air-water interface through a self-initiated reaction and the in-situ X-ray scattering and ex-situ Raman spectroscopy measurements revealed this reaction process. The spreading of lipid molecules having positive and negative head-group charges as surfactants over the water surface shows that the formation of perovskite nanofilms at the air-water interface specifically requires the presence of HCOO$^−$ head-group of stearic acid. In this room temperature interfacial reaction, formate anions come from the stearic acid monolayer present on the water surface and completely replace bromines in the perovskite present in water subphase to form (BA)$_2$Pb(HCOO)$_4$ at the air-water interface. Our results show an easy route for large-scale synthesis of 2D pseudohalide perovskites.
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|f POF IV
|x 0
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 1
536 _ _ |a INDIA-DESY - INDIA-DESY Collaboration (2020_Join2-INDIA-DESY)
|0 G:(DE-HGF)2020_Join2-INDIA-DESY
|c 2020_Join2-INDIA-DESY
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P08
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P08-20150101
|6 EXP:(DE-H253)P-P08-20150101
|x 0
700 1 _ |a Mukhopadhyay, Mrinmay Kumar
|0 P:(DE-H253)PIP1017263
|b 1
|e Corresponding author
700 1 _ |a Sanyal, Milan
|0 P:(DE-H253)PIP1013113
|b 2
|e Corresponding author
700 1 _ |a Bhunia, Satyaban
|b 3
700 1 _ |a Satpati, Biswarup
|b 4
700 1 _ |a Giri, Rajendra P
|0 P:(DE-H253)PIP1024065
|b 5
700 1 _ |a Bharatiya, B.
|0 P:(DE-H253)PIP1101630
|b 6
700 1 _ |a Shen, Chen
|0 P:(DE-H253)PIP1014115
|b 7
700 1 _ |a Murphy, Bridget M.
|0 P:(DE-H253)PIP1008122
|b 8
773 _ _ |a 10.1038/s41598-024-78259-9
|g Vol. 15, no. 1, p. 6216
|0 PERI:(DE-600)2615211-3
|p 6216
|t Scientific reports
|v 15
|y 2025
|x 2045-2322
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/627901/files/s41598-024-78259-9.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/627901/files/s41598-024-78259-9.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:627901
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1102805
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-H253)PIP1017263
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-H253)PIP1013113
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 P:(DE-H253)PIP1024065
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 P:(DE-H253)PIP1101630
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 7
|6 P:(DE-H253)PIP1014115
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 7
|6 P:(DE-H253)PIP1014115
910 1 _ |a Deutsches Elektronen-Synchrotron
|0 I:(DE-588b)2008985-5
|k DESY
|b 8
|6 P:(DE-H253)PIP1008122
910 1 _ |a European XFEL
|0 I:(DE-588)1043621512
|k XFEL.EU
|b 8
|6 P:(DE-H253)PIP1008122
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 8
|6 P:(DE-H253)PIP1008122
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 1
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2024-12-18
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SCI REP-UK : 2022
|d 2024-12-18
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-07-29T15:28:26Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-07-29T15:28:26Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-18
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-18
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-18
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-18
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-18
920 1 _ |0 I:(DE-H253)FS_DOOR-User-20241023
|k FS DOOR-User
|l FS DOOR-User
|x 0
920 1 _ |0 I:(DE-H253)FS-PETRA-D-20210408
|k FS-PETRA-D
|l PETRA-D
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)FS_DOOR-User-20241023
980 _ _ |a I:(DE-H253)FS-PETRA-D-20210408
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21