000627900 001__ 627900
000627900 005__ 20250723105914.0
000627900 0247_ $$2doi$$a10.1016/j.jcat.2024.115911
000627900 0247_ $$2ISSN$$a0021-9517
000627900 0247_ $$2ISSN$$a1090-2694
000627900 0247_ $$2datacite_doi$$a10.3204/PUBDB-2025-01675
000627900 0247_ $$2WOS$$aWOS:001403087400001
000627900 0247_ $$2openalex$$aopenalex:W4405761606
000627900 037__ $$aPUBDB-2025-01675
000627900 041__ $$aEnglish
000627900 082__ $$a540
000627900 1001_ $$aFang, Wenting$$b0
000627900 245__ $$aMolecularly modified aluminum phosphates as support materials for Ru nanoparticles in selective hydrogenation
000627900 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2025
000627900 3367_ $$2DRIVER$$aarticle
000627900 3367_ $$2DataCite$$aOutput Types/Journal article
000627900 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1748350112_583306
000627900 3367_ $$2BibTeX$$aARTICLE
000627900 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000627900 3367_ $$00$$2EndNote$$aJournal Article
000627900 520__ $$aModified aluminum phosphate (APO-5) proved suitable as zeotype support for the preparation of imidazolium-based supported ionic liquid phase material, i.e. SILP(APO-5). The successful chemisorption of ionic liquid-like modifiers at the APO-5 surface was demonstrated by solid- state $^{31}$P and $^{13}$C nuclear magnetic resonance (NMR) spectroscopy. The immobilization of Ru nanoparticles (NPs) on SILP(APO-5) was achieved following an organometallic approach, producing well-dispersed Ru NPs with a mean average size of 1.4 nm on the support. The resulting Ru@SILP(APO-5) material was thoroughly characterized using multiple techniques, e.g., solid-state NMR, transmission electron microscopy (TEM), infrared (IR) spectroscopy, X-ray absorption spectroscopy (XAS), and applied as a catalyst for the hydrogenation of biomass-derived furfural acetone with molecular hydrogen. The ionic liquid-like layer was found beneficial for the stabilization of the Ru NPs as well as of the APO-5 material. A temperature-controlled selectivity switch between olefinic, carbonyl or furan ring hydrogenation could be achieved with this new material with the APO-5 facilitating activation of the olefinic bond, while the carbonyl bond was remarkably deactivated. The demonstrated suitability of aluminum phosphate materials to produce molecularly modified surfaces offers a new control parameter for the systematic design and optimization of zeotype-based catalysts.
000627900 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x0
000627900 536__ $$0G:(GEPRIS)390919832$$aDFG project G:(GEPRIS)390919832 - EXC 2186: Das Fuel Science Center – Adaptive Umwandlungssysteme für erneuerbare Energie- und Kohlenstoffquellen (390919832)$$c390919832$$x1
000627900 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000627900 693__ $$0EXP:(DE-H253)P-P65-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P65-20150101$$aPETRA III$$fPETRA Beamline P65$$x0
000627900 7001_ $$0P:(DE-H253)PIP1103271$$aZhang, Yuyan$$b1
000627900 7001_ $$0P:(DE-H253)PIP1085988$$aKang, Liqun$$b2
000627900 7001_ $$0P:(DE-H253)PIP1015325$$aDeBeer, Serena$$b3
000627900 7001_ $$aLeitner, Walter$$b4
000627900 7001_ $$0P:(DE-H253)PIP1086018$$aBordet, Alexis$$b5$$eCorresponding author
000627900 7001_ $$0P:(DE-HGF)0$$aRiisager, Anders$$b6$$eCorresponding author
000627900 773__ $$0PERI:(DE-600)1468993-5$$a10.1016/j.jcat.2024.115911$$gVol. 442, p. 115911 -$$p115911$$tJournal of catalysis$$v442$$x0021-9517$$y2025
000627900 8564_ $$uhttps://bib-pubdb1.desy.de/record/627900/files/1-s2.0-S0021951724006249-main.pdf$$yOpenAccess
000627900 8564_ $$uhttps://bib-pubdb1.desy.de/record/627900/files/1-s2.0-S0021951724006249-main.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000627900 909CO $$ooai:bib-pubdb1.desy.de:627900$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000627900 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1103271$$aExternal Institute$$b1$$kExtern
000627900 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1085988$$aExternal Institute$$b2$$kExtern
000627900 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1015325$$aExternal Institute$$b3$$kExtern
000627900 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1086018$$aExternal Institute$$b5$$kExtern
000627900 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x0
000627900 9141_ $$y2025
000627900 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-28
000627900 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-28
000627900 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-28
000627900 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000627900 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-28
000627900 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ CATAL : 2022$$d2024-12-28
000627900 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ CATAL : 2022$$d2024-12-28
000627900 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-28
000627900 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-28
000627900 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000627900 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-28
000627900 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-28
000627900 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-28
000627900 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-28
000627900 9201_ $$0I:(DE-H253)FS_DOOR-User-20241023$$kFS DOOR-User$$lFS DOOR-User$$x0
000627900 980__ $$ajournal
000627900 980__ $$aVDB
000627900 980__ $$aUNRESTRICTED
000627900 980__ $$aI:(DE-H253)FS_DOOR-User-20241023
000627900 9801_ $$aFullTexts