000627899 001__ 627899
000627899 005__ 20250723105908.0
000627899 0247_ $$2doi$$a10.1021/acscatal.4c05494
000627899 0247_ $$2datacite_doi$$a10.3204/PUBDB-2025-01674
000627899 0247_ $$2WOS$$aWOS:001416521200001
000627899 0247_ $$2openalex$$aopenalex:W4407238255
000627899 037__ $$aPUBDB-2025-01674
000627899 041__ $$aEnglish
000627899 082__ $$a540
000627899 1001_ $$0P:(DE-H253)PIP1100977$$aZenner, Johannes$$b0
000627899 245__ $$aBimetallic Mn$_x$Ru$_{100–x}$ Nanoparticles on Supported Ionic Liquid Phases (Mn$_x$Ru$_{100–x}$ @SILP) as Tunable Hydrogenation Catalysts
000627899 260__ $$aWashington, DC$$bACS$$c2025
000627899 3367_ $$2DRIVER$$aarticle
000627899 3367_ $$2DataCite$$aOutput Types/Journal article
000627899 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1747734126_890876
000627899 3367_ $$2BibTeX$$aARTICLE
000627899 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000627899 3367_ $$00$$2EndNote$$aJournal Article
000627899 520__ $$aBimetallic manganese–ruthenium nanoparticles of defined Mn:Ru ratios were prepared on an imidazolium-based supported ionic liquid phase. Characterization of the resulting Mn$_x$Ru$_{100–x}$@SILP materials by electron microscopy evidenced the formation of small (1.3–3.6 nm) and well-dispersed nanoparticles (NPs) containing Mn and Ru in the expected ratios. X-ray absorption spectroscopy (XAS) studies revealed that no significant levels of alloying occurred in these NPs that contain mainly oxidized Mn species and metallic Ru, consistent with the immiscibility of the two metals and the high oxophilicity of Mn. The hydrogenation performance of Mn$_x$Ru$_{100–x}$@SILP materials was probed using benzylideneacetone as model substrate containing three distinct reducible moieties. Albeit the two metals are present in distinct phases, the Mn:Ru ratio was found to have a strong impact on activity and selectivity with trends similar to what was previously reported for alloyed Fe$_x$Ru$_{100–x}$@SILP and Co$_x$Ru$_{100–x}$@SILP catalysts. In particular, a sharp switch of 6-membered aromatic ring hydrogenation between Mn$_{15}$Ru$_{85}$ (full ring hydrogenation) and Mn$_{25}$Ru$_{75}$ (no ring hydrogenation) was observed. These results demonstrate that alloying is not a requirement to observe synergistic effects from the combination of 3d metals and noble metals in NPs, opening new opportunities for the development of bimetallic catalysts for selective hydrogenation.
000627899 536__ $$0G:(DE-HGF)POF4-6G3$$a6G3 - PETRA III (DESY) (POF4-6G3)$$cPOF4-6G3$$fPOF IV$$x0
000627899 536__ $$0G:(GEPRIS)390919832$$aDFG project G:(GEPRIS)390919832 - EXC 2186: Das Fuel Science Center – Adaptive Umwandlungssysteme für erneuerbare Energie- und Kohlenstoffquellen (390919832)$$c390919832$$x1
000627899 536__ $$0G:(DE-H253)I-20211319$$aFS-Proposal: I-20211319 (I-20211319)$$cI-20211319$$x2
000627899 536__ $$0G:(DE-H253)I-20230324$$aFS-Proposal: I-20230324 (I-20230324)$$cI-20230324$$x3
000627899 588__ $$aDataset connected to CrossRef, Journals: bib-pubdb1.desy.de
000627899 693__ $$0EXP:(DE-H253)P-P65-20150101$$1EXP:(DE-H253)PETRAIII-20150101$$6EXP:(DE-H253)P-P65-20150101$$aPETRA III$$fPETRA Beamline P65$$x0
000627899 7001_ $$0P:(DE-H253)PIP1085988$$aKang, Liqun$$b1
000627899 7001_ $$aAntil, Neha$$b2
000627899 7001_ $$aJohny, Jacob$$b3
000627899 7001_ $$0P:(DE-H253)PIP1015325$$aDeBeer, Serena$$b4
000627899 7001_ $$0P:(DE-HGF)0$$aLeitner, Walter$$b5$$eCorresponding author
000627899 7001_ $$0P:(DE-H253)PIP1086018$$aBordet, Alexis$$b6$$eCorresponding author
000627899 773__ $$0PERI:(DE-600)2584887-2$$a10.1021/acscatal.4c05494$$gVol. 15, no. 4, p. 3227 - 3235$$n4$$p3227 - 3235$$tACS catalysis$$v15$$x2155-5435$$y2025
000627899 8564_ $$uhttps://bib-pubdb1.desy.de/record/627899/files/zenner-et-al-2025-bimetallic-mnxru100-x-nanoparticles-on-supported-ionic-liquid-phases-%28mnxru100-x-silp%29-as-tunable.pdf$$yOpenAccess
000627899 8564_ $$uhttps://bib-pubdb1.desy.de/record/627899/files/zenner-et-al-2025-bimetallic-mnxru100-x-nanoparticles-on-supported-ionic-liquid-phases-%28mnxru100-x-silp%29-as-tunable.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000627899 909CO $$ooai:bib-pubdb1.desy.de:627899$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000627899 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1100977$$aExternal Institute$$b0$$kExtern
000627899 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1085988$$aExternal Institute$$b1$$kExtern
000627899 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1015325$$aExternal Institute$$b4$$kExtern
000627899 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1086018$$aExternal Institute$$b6$$kExtern
000627899 9131_ $$0G:(DE-HGF)POF4-6G3$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vPETRA III (DESY)$$x0
000627899 9141_ $$y2025
000627899 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-07
000627899 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-07
000627899 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000627899 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS CATAL : 2022$$d2025-01-07
000627899 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-07
000627899 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bACS CATAL : 2022$$d2025-01-07
000627899 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-07
000627899 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000627899 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2025-01-07
000627899 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-07
000627899 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-07
000627899 9201_ $$0I:(DE-H253)FS_DOOR-User-20241023$$kFS DOOR-User$$lFS DOOR-User$$x0
000627899 980__ $$ajournal
000627899 980__ $$aVDB
000627899 980__ $$aUNRESTRICTED
000627899 980__ $$aI:(DE-H253)FS_DOOR-User-20241023
000627899 9801_ $$aFullTexts