001     627891
005     20250723105903.0
024 7 _ |a 10.1021/acs.iecr.4c03439
|2 doi
024 7 _ |a 0888-5885
|2 ISSN
024 7 _ |a 1520-5045
|2 ISSN
024 7 _ |a 10.3204/PUBDB-2025-01666
|2 datacite_doi
024 7 _ |a WOS:001389937400001
|2 WOS
024 7 _ |a openalex:W4406065734
|2 openalex
037 _ _ |a PUBDB-2025-01666
041 _ _ |a English
082 _ _ |a 660
100 1 _ |a Dal Molin, Emiliano S.
|0 P:(DE-H253)PIP1099278
|b 0
|e Corresponding author
245 _ _ |a Additively Manufactured Zirconia-Supported Indium Oxide Catalysts and Their Performance in Direct Methanol Synthesis
260 _ _ |a Columbus, Ohio
|c 2025
|b American Chemical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1747991918_2911039
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In$_2$O$_3$/ZrO$_2$-based materials are emerging as candidates for the next generation of industrial catalysts for direct methanol synthesis. In this research, such catalysts were additively manufactured into two distinct geometries that exhibit different pressure drops and activity profiles, both among themselves and in comparison to extrudates. The monoliths produced were comprehensively characterized using a range of techniques, including gas sorption, X-ray diffraction, micro X-ray fluorescence, and Raman mapping, to verify their phase and chemical composition. Computational fluid dynamics was employed to simulate the gas flow through these structures, corroborating that the variations in the accessible surface area are the reason for changes in their performance. Furthermore, the postreaction characterization provides some insight into the catalysts’ degradation mechanisms under hydrogen-rich conditions, identifying the migration of indium oxide to the catalyst surface and pore blocking as possible causes of the loss of activity.
536 _ _ |a 6G3 - PETRA III (DESY) (POF4-6G3)
|0 G:(DE-HGF)POF4-6G3
|c POF4-6G3
|f POF IV
|x 0
536 _ _ |a DFG project G:(GEPRIS)390540038 - EXC 2008: Unifying Systems in Catalysis "UniSysCat" (390540038)
|0 G:(GEPRIS)390540038
|c 390540038
|x 1
536 _ _ |a FS-Proposal: II-20210010 (II-20210010)
|0 G:(DE-H253)II-20210010
|c II-20210010
|x 2
536 _ _ |a FS-Proposal: I-20220620 (I-20220620)
|0 G:(DE-H253)I-20220620
|c I-20220620
|x 3
588 _ _ |a Dataset connected to CrossRef, Journals: bib-pubdb1.desy.de
693 _ _ |a PETRA III
|f PETRA Beamline P02.2
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P02.2-20150101
|6 EXP:(DE-H253)P-P02.2-20150101
|x 0
693 _ _ |a PETRA III
|f PETRA Beamline P64
|1 EXP:(DE-H253)PETRAIII-20150101
|0 EXP:(DE-H253)P-P64-20150101
|6 EXP:(DE-H253)P-P64-20150101
|x 1
700 1 _ |a Javed, Mudassar
|b 1
700 1 _ |a Brösigke, Georg
|0 0000-0003-1104-4087
|b 2
700 1 _ |a Rudolph, Maik Alexander
|0 P:(DE-H253)PIP1103545
|b 3
700 1 _ |a Repke, Jens-Uwe
|b 4
700 1 _ |a Schomäcker, Reinhard
|0 0000-0003-3106-3904
|b 5
700 1 _ |a Simon, Ulla
|b 6
700 1 _ |a Bekheet, Maged F.
|0 P:(DE-H253)PIP1014573
|b 7
|e Corresponding author
700 1 _ |a Gurlo, Aleksander
|0 P:(DE-H253)PIP1008033
|b 8
773 _ _ |a 10.1021/acs.iecr.4c03439
|g Vol. 64, no. 2, p. 1032 - 1045
|0 PERI:(DE-600)1484436-9
|n 2
|p 1032 - 1045
|t Industrial & engineering chemistry research
|v 64
|y 2025
|x 0888-5885
856 4 _ |y OpenAccess
|u https://bib-pubdb1.desy.de/record/627891/files/dal-molin-et-al-2025-additively-manufactured-zirconia-supported-indium-oxide-catalysts-and-their-performance-in-direct.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://bib-pubdb1.desy.de/record/627891/files/dal-molin-et-al-2025-additively-manufactured-zirconia-supported-indium-oxide-catalysts-and-their-performance-in-direct.pdf?subformat=pdfa
909 C O |o oai:bib-pubdb1.desy.de:627891
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-H253)PIP1099278
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-H253)PIP1103545
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 7
|6 P:(DE-H253)PIP1014573
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 8
|6 P:(DE-H253)PIP1008033
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G3
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v PETRA III (DESY)
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2025-01-02
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2025-01-02
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b IND ENG CHEM RES : 2022
|d 2025-01-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-02
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2025-01-02
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-02
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2025-01-02
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-02
920 1 _ |0 I:(DE-H253)FS_DOOR-User-20241023
|k FS DOOR-User
|l FS DOOR-User
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-H253)FS_DOOR-User-20241023
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21